Human mesenchymal stem cells derived from umbilical cord and bone marrow exert immunomodulatory effects in different mechanisms

被引:27
作者
Song, Yunejin [1 ,2 ,3 ]
Lim, Jung-Yeon [1 ,2 ,4 ]
Lim, Taekyu [5 ]
Im, Keon-Il [1 ,2 ]
Kim, Nayoun [1 ,2 ]
Nam, Young-Sun [1 ,2 ]
Jeon, Young-Woo [1 ,2 ,6 ]
Shin, Jong Chul [7 ]
Ko, Hyun Sun [8 ]
Park, In Yang [8 ]
Cho, Seok-Goo [1 ,2 ,6 ,9 ]
机构
[1] Catholic Univ Korea, Coll Med, Inst Translat Res & Mol Imaging, Seoul 06591, South Korea
[2] Catholic Univ Korea, Coll Med, Lab Immune Regulat, Convergent Res Consortium Immunol Dis, Seoul 06591, South Korea
[3] Catholic Univ Korea, Coll Med, Dept Biomed & Hlth Sci, Seoul 06591, South Korea
[4] Icahn Sch Med Mt Sinai, Precis Immunol Inst, New York, NY 10029 USA
[5] Vet Hlth Serv Med Ctr, Dept Internal Med, Div Hematol Oncol, Seoul 05368, South Korea
[6] Catholic Univ Korea, Coll Med, Seoul St Marys Hosp, Dept Hematol,Catholic Blood & Marrow Transplantat, Seoul 06591, South Korea
[7] CHA Univ, CHA Bundang Med Ctr, Dept Obstet & Gynecol, Seongnam 13496, South Korea
[8] Catholic Univ Korea, Coll Med, Dept Obstet & Gynecol, Seoul 06591, South Korea
[9] Catholic Univ Korea, Coll Med, Dept Internal Med, Div Hematol, Banpodaero 222, Seoul 06591, South Korea
关键词
Mesenchymal stem cells; Graft-versus-host disease; Umbilical cord; Cell therapy; Xenogeneic mouse model; Immunomodulation; SUPPRESS T-LYMPHOCYTE; VERSUS-HOST-DISEASE; STROMAL CELLS; INTERFERON-GAMMA; GROWTH-FACTOR; PROLIFERATION; ANTIGEN; BLOOD; TRANSPLANTATION; INTERLEUKIN-6;
D O I
10.4252/wjsc.v12.i9.1032
中图分类号
Q813 [细胞工程];
学科分类号
摘要
BACKGROUND Mesenchymal stem cells (MSCs) are an attractive tool to treat graft-versus-host disease because of their unique immunoregulatory properties. Although human bone marrow-derived MSCs (BM-MSCs) were the most widely used MSCs in cell therapy until recently, MSCs derived from human umbilical cords (UC-MSCs) have gained popularity as cell therapy material for their ethical and noninvasive collection. AIM To investigate the difference in mechanisms of the immunosuppressive effects of UC-MSCs and BM-MSCs. METHODS To analyze soluble factors expressed by MSCs, such as indolamine 2,3-dioxygenase, cyclooxygenase-2, prostaglandin E2 and interleukin (IL)-6, inflammatory environmentsin vitrowere reconstituted with combinations of interferon-gamma (IFN-gamma), tumor necrosis factor alpha and IL-1 beta or with IFN-gamma alone. Activated T cells were cocultured with MSCs treated with indomethacin and/or anti-IL-10. To assess the ability of MSCs to inhibit T helper 17 cells and induce regulatory T cells, induced T helper 17 cells were cocultured with MSCs treated with indomethacin or anti-IL-10. Xenogeneic graft-versus-host disease was induced in NOG mice (NOD/Shi-scid/IL-2R gamma(null)) and UC-MSCs or BM-MSCs were treated as cell therapies. RESULTS Our data demonstrated that BM-MSCs and UC-MSCs shared similar phenotypic characteristics and immunomodulation abilities. BM-MSCs expressed more indolamine 2,3-dioxygenase after cytokine stimulation with different combinations of IFN-gamma, tumor necrosis factor alpha-alpha and IL-1 beta or IFN-gamma alone. UC-MSCs expressed more prostaglandin E2, IL-6, programmed death-ligand 1 and 2 in thein vitroinflammatory environment. Cyclooxygenase-2 and IL-10 were key factors in the immunomodulatory mechanisms of both MSCs. In addition, UC-MSCs inhibited more T helper 17 cells and induced more regulatory T cells than BM-MSCs. UC-MSCs and BM-MSCs exhibited similar effects on attenuating graft-versus-host disease. CONCLUSION UC-MSCs and BM-MSCs exert similar immunosuppressive effects with different mechanisms involved. These findings suggest that UC-MSCs have distinct immunoregulatory functions and may substitute BM-MBSCs in the field of cell therapy.
引用
收藏
页码:1032 / 1049
页数:18
相关论文
共 41 条
[1]   Recent developments in tissue engineering and regenerative medicine [J].
Atala, Anthony .
CURRENT OPINION IN PEDIATRICS, 2006, 18 (02) :167-171
[2]   PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells [J].
Blank, C ;
Brown, I ;
Peterson, AC ;
Spiotto, M ;
Iwai, Y ;
Honjo, T ;
Gajewski, TF .
CANCER RESEARCH, 2004, 64 (03) :1140-1145
[3]   Fibroblast Growth Factor 2 and Platelet-Derived Growth Factor, but Not Platelet Lysate, Induce Proliferation-Dependent, Functional Class II Major Histocompatibility Complex Antigen in Human Mesenchymal Stem Cells [J].
Bocelli-Tyndall, Chiara ;
Zajac, Paul ;
Di Maggio, Nunzia ;
Trella, Emanuele ;
Benvenuto, Federica ;
Iezzi, Giandomenica ;
Scherberich, Arnaud ;
Barbero, Andrea ;
Schaeren, Stefan ;
Pistoia, Vito ;
Spagnoli, Giulio ;
Vukcevic, Mirko ;
Martin, Ivan ;
Tyndall, Alan .
ARTHRITIS AND RHEUMATISM, 2010, 62 (12) :3815-3825
[4]   In vitro-differentiated TH17 cells mediate lethal acute graft-versus-host disease with severe cutaneous and pulmonary pathologic manifestations [J].
Carlson, Michael J. ;
West, Michelle L. ;
Coghill, James M. ;
Panoskaltsis-Mortari, Angela ;
Blazar, Bruce R. ;
Serody, Jonathan S. .
BLOOD, 2009, 113 (06) :1365-1374
[5]   Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing [J].
Chen, Liwen ;
Tredget, Edward E. ;
Wu, Philip Y. G. ;
Wu, Yaojiong .
PLOS ONE, 2008, 3 (04)
[6]   Analysis of Allogenicity of Mesenchymal Stem Cells in Engraftment and Wound Healing in Mice [J].
Chen, Liwen ;
Tredget, Edward E. ;
Liu, Chenxiong ;
Wu, Yaojiong .
PLOS ONE, 2009, 4 (09)
[7]   Prostaglandin E2 Induces IL-6 and IL-8 Production by the EP Receptors/Akt/NF-κB Pathways in Nasal Polyp-Derived Fibroblasts [J].
Cho, Jung-Sun ;
Han, In-Hye ;
Lee, Hye Rim ;
Lee, Heung-Man .
ALLERGY ASTHMA & IMMUNOLOGY RESEARCH, 2014, 6 (05) :449-457
[8]   Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn's disease [J].
Ciccocioppo, Rachele ;
Bernardo, Maria Ester ;
Sgarella, Adele ;
Maccario, Rita ;
Avanzini, Maria Antonietta ;
Ubezio, Cristina ;
Minelli, Antonella ;
Alvisi, Costanza ;
Vanoli, Alessandro ;
Calliada, Fabrizio ;
Dionigi, Paolo ;
Perotti, Cesare ;
Locatelli, Franco ;
Corazza, Gino Roberto .
GUT, 2011, 60 (06) :788-798
[9]   Interferon-γ Regulates the Proliferation and Differentiation of Mesenchymal Stem Cells via Activation of Indoleamine 2,3 Dioxygenase (IDO) [J].
Croitoru-Lamoury, Juliana ;
Lamoury, Francois M. J. ;
Caristo, Michael ;
Suzuki, Kazuo ;
Walker, David ;
Takikawa, Osamu ;
Taylor, Rosanne ;
Brew, Bruce J. .
PLOS ONE, 2011, 6 (02)
[10]   Mesenchymal cells recruit and regulate T regulatory cells [J].
Di Lanni, Mauro ;
Del Papa, Beatrice ;
De Loanni, Maria ;
Moretti, Lorenzo ;
Bonifacio, Elisabetta ;
Cecchini, Debora ;
Sportoletti, Paolo ;
Falzetti, Franca ;
Tabilio, Antonio .
EXPERIMENTAL HEMATOLOGY, 2008, 36 (03) :309-318