Influence of Ni to Co ratio supported on ZrO2 catalysts in phenol steam reforming for hydrogen production

被引:68
|
作者
Nabgan, Walid [1 ,2 ]
Abdullah, Tuan Amran Tuan [1 ,2 ]
Mat, Ramli [2 ]
Nabgan, Bahador [1 ,2 ]
Gambo, Yahya [2 ]
Triwahyono, Sugeng [3 ]
机构
[1] Univ Teknol Malaysia, Ctr Hydrogen Energy, Inst Future Energy, Utm Skudai 81310, Johor, Malaysia
[2] Univ Teknol Malaysia, Dept Chem Engn, Utm Skudai 81310, Johor, Malaysia
[3] Univ Teknol Malaysia, Dept Chem, Ctr Sustainable Nanomat CSNano, Utm Skudai 81310, Johor, Malaysia
关键词
Ni to Co ratio; ZrO2; Phenol steam reforming; Hydrogen production; BIO-OIL; H-2; PRODUCTION; BIMETALLIC CATALYSTS; SYNGAS PRODUCTION; MODEL COMPOUNDS; GAS STREAMS; METHANE; NICKEL; ETHANOL; COBALT;
D O I
10.1016/j.ijhydene.2016.10.055
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, catalytic steam reforming of phenol for hydrogen production was investigated. This study focuses on the effects of Ni to Co ratio supported on ZrO2 catalysts. The NixCoy/ZrO2 (x = 0, 1, 2, 3, 4 where x + y = 4) catalysts were prepared by impregnation method. Steam reforming activity was tested in a fixed bed reactor at 600 degrees C using a feed of phenol/water mixture at a molar ratio of 1:9 and a constant liquid feed rate of 0.36 ml/min. The catalysts were characterized by BET surface area, X-ray diffraction (XRD), transmission electron microscopy (TEM), NH3 Temperature-Programmed Desorption (NH3-TPD), CO2 Temperature-Programmed Desorption (CO2-TPD), H-2 Temperature-Programmed Reduction (H-2-TPR) and thermo-gravimetric analysis (TGA). The increase in the Co content from 0 to 4, caused a decrease in the crystal size, the t-ZrO2 phase and the reducibility of the catalysts. However, it only slightly affected the total surface area. It was found that metallic Ni-4 and Coo catalysts have lower activity towards phenol steam reforming and deposit higher coke due to having higher acidity sites compare to bimetallic catalysts. In contrast, Ni3Co1 displayed a superior catalytic activity among all the catalysts, suggesting the presence of the highest basic site and high coking resistance. Phenol conversion of 53.5% and hydrogen yield of 50.4% were achieved with the Ni3Co1 catalyst, even though its activity decreased by increasing the cobalt content. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:22922 / 22931
页数:10
相关论文
共 50 条
  • [21] Steam reforming of acetic acid for hydrogen production over bifunctional Ni-Co catalysts
    Pant, Kamal K.
    Mohanty, Pravakar
    Agarwal, Sunit
    Dalai, Ajay K.
    CATALYSIS TODAY, 2013, 207 : 36 - 43
  • [22] Steam reforming of toluene, methane and mixtures over Ni/ZrO2 catalysts
    Silveira, E. B.
    Rabelo-Neto, R. C.
    Noronha, F. B.
    CATALYSIS TODAY, 2017, 289 : 289 - 301
  • [23] Ni supported high surface area CeO2-ZrO2 catalysts for hydrogen production from ethanol steam reforming
    Ebiad, Mohamed A.
    El-Hafiz, Dalia R. Abd
    Elsalamony, Radwa A.
    Mohamed, Lamia. S.
    RSC ADVANCES, 2012, 2 (21) : 8145 - 8156
  • [24] Effects of Co Addition to Supported Ni Catalysts on Hydrogen Production from Oxidative Steam Reforming of Ethanol
    Braga, Adriano H.
    Ribeiro, Mauro C.
    Noronha, Fabio B.
    Galante, Douglas
    Bueno, Jose M. C.
    Santos, Joao B. O.
    ENERGY & FUELS, 2018, 32 (12) : 12814 - 12825
  • [25] Co-Ni Catalysts Derived from Hydrotalcite-Like Materials for Hydrogen Production by Ethanol Steam Reforming
    He, Li
    Berntsen, Helene
    Ochoa-Fernandez, Esther
    Walmsley, John C.
    Blekkan, Edd A.
    Chen, De
    TOPICS IN CATALYSIS, 2009, 52 (03) : 206 - 217
  • [26] Steam reforming of acetic acid over MgAl2O4-supported Co and Ni catalysts: Effect of the composition of Ni/Co and reactants on reaction pathways
    Mizuno, Stefanie C. M.
    Braga, Adriano H.
    Hori, Carla E.
    Santos, Joao Batista O.
    Bueno, Jose Maria C.
    CATALYSIS TODAY, 2017, 296 : 144 - 153
  • [27] Oxidative Steam Reforming of Raw Bio-Oil over Supported and Bulk Ni Catalysts for Hydrogen Production
    Arandia, Aitor
    Remiro, Aingeru
    Garcia, Veronica
    Castano, Pedro
    Bilbao, Javier
    Gayubo, Ana G.
    CATALYSTS, 2018, 8 (08)
  • [28] Suppression of carbon formation in steam reforming of methane by addition of Co into Ni/ZrO2 catalysts
    Dasika Harshini
    Yongchai Kwon
    Jonghee Han
    Sung Pil Yoon
    Suk Woo Nam
    Tae-Hoon Lim
    Korean Journal of Chemical Engineering, 2010, 27 : 480 - 486
  • [29] Ni/Y2O3-ZrO2 catalyst for hydrogen production through the glycerol steam reforming reaction
    Charisiou, N. D.
    Siakavelas, G.
    Tzounis, L.
    Dou, B.
    Sebastian, V.
    Hinder, S. J.
    Baker, M. A.
    Polychronopoulou, K.
    Goula, M. A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (17) : 10442 - 10460
  • [30] Catalytic properties of M-Cu/ZrO2 (M = Fe, Co, Ni) in steam reforming of ethanol
    I. V. Deinega
    L. Yu. Dolgykh
    I. L. Stolyarchuk
    L. A. Staraya
    P. E. Strizhak
    E. M. Moroz
    V. P. Pakharukova
    D. A. Zyuzin
    Theoretical and Experimental Chemistry, 2013, 48 : 386 - 393