On adaptive Metropolis-Hastings methods

被引:12
|
作者
Griffin, Jim E. [1 ]
Walker, Stephen G. [1 ]
机构
[1] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury, Kent, England
关键词
MCMC; Metropolis-Hastings algorithm; Gibbs sampling; Metropolis-within-Gibbs; Adaptive Monte Carlo; ERGODICITY; ALGORITHM;
D O I
10.1007/s11222-011-9296-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a method for adaptation in Metropolis-Hastings algorithms. A product of a proposal density and K copies of the target density is used to define a joint density which is sampled by a Gibbs sampler including a Metropolis step. This provides a framework for adaptation since the current value of all K copies of the target distribution can be used in the proposal distribution. The methodology is justified by standard Gibbs sampling theory and generalizes several previously proposed algorithms. It is particularly suited to Metropolis-within-Gibbs updating and we discuss the application of our methods in this context. The method is illustrated with both a Metropolis-Hastings independence sampler and a Metropolis-with-Gibbs independence sampler. Comparisons are made with standard adaptive Metropolis-Hastings methods.
引用
收藏
页码:123 / 134
页数:12
相关论文
共 50 条
  • [21] A Metropolis-Hastings Algorithm for Task Allocation
    Hamza, Doha
    Toonsi, Sarah
    Shamma, Jeff S.
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4539 - 4545
  • [22] Langevin Diffusions and Metropolis-Hastings Algorithms
    G. O. Roberts
    O. Stramer
    Methodology And Computing In Applied Probability, 2002, 4 (4) : 337 - 357
  • [23] On a Metropolis-Hastings importance sampling estimator
    Rudolf, Daniel
    Sprungk, Bjoern
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 857 - 889
  • [24] Metropolis-Hastings transition kernel couplings
    O'Leary, John
    Wang, Guanyang
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (02): : 1101 - 1124
  • [25] On the Poisson equation for Metropolis-Hastings chains
    Mijatovic, Aleksandar
    Vogrinc, Jure
    BERNOULLI, 2018, 24 (03) : 2401 - 2428
  • [26] Maximal Couplings of the Metropolis-Hastings Algorithm
    O'Leary, John
    Wang, Guanyang
    Jacob, Pierre E.
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [27] On the geometric ergodicity of Metropolis-Hastings algorithms
    Atchade, Yves F.
    Perron, Francois
    STATISTICS, 2007, 41 (01) : 77 - 84
  • [28] Metropolis-Hastings Generative Adversarial Networks
    Turner, Ryan
    Hung, Jane
    Frank, Eric
    Saatci, Yunus
    Yosinski, Jason
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [29] Non-reversible Metropolis-Hastings
    Joris Bierkens
    Statistics and Computing, 2016, 26 : 1213 - 1228
  • [30] CONVERGENCE OF CONDITIONAL METROPOLIS-HASTINGS SAMPLERS
    Jones, Galin L.
    Roberts, Gareth O.
    Rosenthal, Jeffrey S.
    ADVANCES IN APPLIED PROBABILITY, 2014, 46 (02) : 422 - 445