On a q-analogue for Bernoulli numbers

被引:1
作者
Chan, O-Yeat [1 ]
Manna, Dante [1 ]
机构
[1] Virginia Wesleyan Coll, Dept Math & Comp Sci, Norfolk, VA 23502 USA
关键词
Bernoulli number; Bernoulli polynomial; q-Analogue; Strodt operator; Stirling number; SERIES;
D O I
10.1007/s11139-012-9413-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inspired by Borwein et al. (Am. Math. Mon., 116(5):387-412, 2009), we define a sequence of q-analogues for the Bernoulli numbers under the framework of Strodt operators. We show that they not only satisfy identities similar to those of the q-analogue proposed by Carlitz (Duke Math. J., 15(4):987-1000, 1948), but also interesting analytical properties as functions of q. In particular, we give a simple analytic proof of a generalization of an explicit formula for the Bernoulli numbers given by Woon (Math. Mag., 70(1):51-56, 1997). We also define a set of q-analogues for the Stirling numbers of the second kind within our framework and prove a q-extension of a related, well-known closed form relating Bernoulli and Stirling numbers.
引用
收藏
页码:125 / 152
页数:28
相关论文
共 15 条
[1]  
Al-Salam W., 1967, ANN MAT PUR APPL, V77, P31
[2]  
Al-Salam W.A., 1958, Math. Nachr, V17, P239, DOI [10.1002/mana.19580170311, DOI 10.1002/MANA.19580170311]
[3]  
[Anonymous], 1984, The Theory of Partitions
[4]   Euler-Boole Summation Revisited [J].
Borwein, Jonathan M. ;
Calkin, Neil J. ;
Manna, Dante .
AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (05) :387-412
[5]   Q-BERNOULLI NUMBERS AND POLYNOMIALS [J].
CARLITZ, L .
DUKE MATHEMATICAL JOURNAL, 1948, 15 (04) :987-1000
[6]  
CARLITZ L, 1954, T AM MATH SOC, V76, P332
[7]  
Ernst T., 2006, International Journal of Difference Equations, V1, P31
[8]  
Ernst Thomas, 2008, Adv. Dyn. Syst. Appl., V3, P251
[9]   Q-STIRLING NUMBERS OF FIRST AND SECOND KINDS [J].
GOULD, HW .
DUKE MATHEMATICAL JOURNAL, 1961, 28 (02) :281-&
[10]   Combinatorics of generalized q-Euler numbers [J].
Huber, Tim ;
Yee, Ae Ja .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (04) :361-388