On a q-analogue for Bernoulli numbers

被引:1
作者
Chan, O-Yeat [1 ]
Manna, Dante [1 ]
机构
[1] Virginia Wesleyan Coll, Dept Math & Comp Sci, Norfolk, VA 23502 USA
关键词
Bernoulli number; Bernoulli polynomial; q-Analogue; Strodt operator; Stirling number; SERIES;
D O I
10.1007/s11139-012-9413-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inspired by Borwein et al. (Am. Math. Mon., 116(5):387-412, 2009), we define a sequence of q-analogues for the Bernoulli numbers under the framework of Strodt operators. We show that they not only satisfy identities similar to those of the q-analogue proposed by Carlitz (Duke Math. J., 15(4):987-1000, 1948), but also interesting analytical properties as functions of q. In particular, we give a simple analytic proof of a generalization of an explicit formula for the Bernoulli numbers given by Woon (Math. Mag., 70(1):51-56, 1997). We also define a set of q-analogues for the Stirling numbers of the second kind within our framework and prove a q-extension of a related, well-known closed form relating Bernoulli and Stirling numbers.
引用
收藏
页码:125 / 152
页数:28
相关论文
共 15 条
  • [1] Al-Salam W., 1967, ANN MAT PUR APPL, V77, P31
  • [2] Al-Salam W.A., 1958, Math. Nachr, V17, P239, DOI [10.1002/mana.19580170311, DOI 10.1002/MANA.19580170311]
  • [3] [Anonymous], 1984, The Theory of Partitions
  • [4] Euler-Boole Summation Revisited
    Borwein, Jonathan M.
    Calkin, Neil J.
    Manna, Dante
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (05) : 387 - 412
  • [5] Q-BERNOULLI NUMBERS AND POLYNOMIALS
    CARLITZ, L
    [J]. DUKE MATHEMATICAL JOURNAL, 1948, 15 (04) : 987 - 1000
  • [6] CARLITZ L, 1954, T AM MATH SOC, V76, P332
  • [7] Ernst T., 2006, International Journal of Difference Equations, V1, P31
  • [8] Ernst Thomas, 2008, Adv. Dyn. Syst. Appl., V3, P251
  • [9] Q-STIRLING NUMBERS OF FIRST AND SECOND KINDS
    GOULD, HW
    [J]. DUKE MATHEMATICAL JOURNAL, 1961, 28 (02) : 281 - &
  • [10] Combinatorics of generalized q-Euler numbers
    Huber, Tim
    Yee, Ae Ja
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (04) : 361 - 388