Photovoltaic effect in Si/SiO2 superlattice microdisk array solar cell structure

被引:3
作者
Yamada, Shigeru [1 ]
Shirayanagi, Yusuke [1 ]
Narihara, Teruhiko [1 ]
Kumada, Masatoshi [1 ]
Porponth, Sichanugrist [1 ,3 ]
Ichikawa, Yukimi [1 ,3 ]
Miyajima, Shinsuke [2 ]
Konagai, Makoto [1 ,3 ]
机构
[1] Japan Sci & Technol Agcy JST, FUTURE PV Project, Koriyama, Fukushima 9630215, Japan
[2] Tokyo Inst Technol, Dept Elect & Elect Engn, Meguro Ku, Tokyo 1528552, Japan
[3] Tokyo City Univ, Adv Res Labs, Setagaya Ku, Tokyo 1580082, Japan
关键词
Silicon; Superlattices; Microdisks; Solar cells; Thin films; SUGGESTED INTERPRETATION; TEMPERATURE-DEPENDENCE; QUANTUM CONFINEMENT; EFFICIENCY; CRYSTALLIZATION; CONDUCTIVITY; TERMS; GAP; SI;
D O I
10.1016/j.spmi.2020.106640
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Silicon/silicon dioxide (Si/SiO2) superlattice microdisk (SLMD) array solar cell structures were fabricated by a photolithography process. An open-circuit voltage of 661 mV was obtained from a Si/SiO2 SLMD array solar cell using a superlattice composed of 5.6-nm-thick Si layers and 2.5-nm-thick SiO2 layers. This open-circuit voltage is significantly higher than that of polycrystalline silicon microdisk solar cells. We also investigated the quantum efficiency and the temperature dependence of the open-circuit voltage. Detailed analysis suggests that the bandgap of the Si/SiO2 superlattice is approximately 1.4 eV, which is larger than that of c-Si.
引用
收藏
页数:8
相关论文
共 36 条
  • [1] Theory and simulation of photogeneration and transport in Si-SiOx superlattice absorbers
    Aeberhard, Urs
    [J]. NANOSCALE RESEARCH LETTERS, 2011, 6 : 1 - 10
  • [2] Band gap dependence with temperature of semiconductors from solar cells electrical parameters
    Bensalem, S.
    Chegaar, M.
    Herguth, A.
    [J]. CURRENT APPLIED PHYSICS, 2017, 17 (01) : 55 - 59
  • [3] BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
  • [4] A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF HIDDEN VARIABLES .2.
    BOHM, D
    [J]. PHYSICAL REVIEW, 1952, 85 (02): : 180 - 193
  • [5] Spectroscopic ellipsometry analyses of sputtered Si/SiO2 nanostructures
    Charvet, S
    Madelon, R
    Gourbilleau, F
    Rizk, R
    [J]. JOURNAL OF APPLIED PHYSICS, 1999, 85 (08) : 4032 - 4039
  • [6] Silicon quantum dot nanostructures for tandem photovoltaic cells
    Conibeer, Gavin
    Green, Martin
    Cho, Eun-Chel
    Koenig, Dirk
    Cho, Young-Hyun
    Fangsuwannarak, Thipwan
    Scardera, Giuseppe
    Pink, Edwin
    Huang, Yidan
    Puzzer, Tom
    Huang, Shujuan
    Song, Dengyuan
    Flynn, Chris
    Park, Sangwook
    Hao, Xiaojing
    Mansfield, Daniel
    [J]. THIN SOLID FILMS, 2008, 516 (20) : 6748 - 6756
  • [7] Silicon quantum dot based solar cells: addressing the issues of doping, voltage and current transport
    Conibeer, Gavin
    Green, Martin A.
    Koenig, Dirk
    Perez-Wurfl, Ivan
    Huang, Shujuan
    Hao, Xiaojing
    Di, Dawei
    Shi, Lei
    Shrestha, Santosh
    Puthen-Veetil, Binesh
    So, Yong
    Zhang, Bo
    Wan, Zhenyu
    [J]. PROGRESS IN PHOTOVOLTAICS, 2011, 19 (07): : 813 - 824
  • [8] Quantum confinement regime in silicon nanocrystals
    Derr, Julien
    Dunn, Kerry
    Riabinina, Daria
    Martin, Francois
    Chaker, Mohamed
    Rosei, Federico
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (04) : 668 - 670
  • [9] First-principles calculations of the temperature dependence of the band gap of Si nanocrystals
    Franceschetti, A.
    [J]. PHYSICAL REVIEW B, 2007, 76 (16)
  • [10] Bohmian mechanics with complex action: A new trajectory-based formulation of quantum mechanics
    Goldfarb, Yair
    Degani, Ilan
    Tannor, David J.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (23)