Kinetic energy based relativistic first order wave equations

被引:1
|
作者
Umul, Yusuf Ziya [1 ]
机构
[1] Cankaya Univ, Elect & Commun Dept, Eskisehir Yolu 29 Km, TR-06790 Ankara, Turkey
来源
OPTIK | 2019年 / 181卷
关键词
Relativistic quantum mechanics; Special relativity; Wave equation; ELECTRON;
D O I
10.1016/j.ijleo.2018.12.042
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A relativistic wave equation is derived for spin-1/2 particles. The energy relation is taken into account with respect to the kinetic energy term. Two first order differential equations are obtained from the kinetic energy based relativistic equations. The spin information is integrated to the new equations in two alternative forms.
引用
收藏
页码:320 / 325
页数:6
相关论文
共 50 条
  • [1] Relativistic wave equation for a quantum particle with potential energy
    Umul, Yusuf Ziya
    OPTIK, 2019, 180 : 220 - 225
  • [2] Two body relativistic wave equations
    Giachetti, R.
    Sorace, E.
    ANNALS OF PHYSICS, 2019, 401 : 202 - 223
  • [3] Relativistic Wave Equations and Compton Scattering
    B. A. Robson
    S. H. Sutanto
    International Journal of Theoretical Physics, 2001, 40 : 1491 - 1499
  • [4] Relativistic Wave Equations and Hydrogenic Atoms
    B. A. Robson
    S. H. Sutanto
    International Journal of Theoretical Physics, 2001, 40 : 1475 - 1489
  • [5] APPROXIMATION OF CONTROLS FOR LINEAR WAVE EQUATIONS: A FIRST ORDER MIXED FORMULATION
    Montaner, Santiago
    Munch, Arnaud
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2019, 9 (04) : 729 - 758
  • [6] Wave equations & energy
    Bray, William O.
    Hunter, Ellen
    AIMS MATHEMATICS, 2019, 4 (03): : 463 - 481
  • [7] ENERGY CONSERVING EXPLICIT LOCAL TIME STEPPING FOR SECOND-ORDER WAVE EQUATIONS
    Diaz, Julien
    Grote, Marcus J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (03) : 1985 - 2014
  • [8] Discrete stability of perfectly matched layers for anisotropic wave equations in first and second order formulation
    Kreiss, Gunilla
    Duru, Kenneth
    BIT NUMERICAL MATHEMATICS, 2013, 53 (03) : 641 - 663
  • [9] Octonic second-order equations of relativistic quantum mechanics
    Mironov, Victor L.
    Mironov, Sergey V.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)
  • [10] Discrete stability of perfectly matched layers for anisotropic wave equations in first and second order formulation
    Gunilla Kreiss
    Kenneth Duru
    BIT Numerical Mathematics, 2013, 53 : 641 - 663