Well-posedness of a stochastic phase-field problem with multiplicative noises

被引:0
作者
El Kettani, Perla [1 ]
机构
[1] Univ Paris Sud, Lab Math Anal Numer & EDP, F-91405 Orsay, France
关键词
multiplicative noises; nonlinear parabolic equations; phase transition problems; stochastic monotonicity method; stochastic partial differential equations; stochastic phase-field problem; EQUATIONS;
D O I
10.1002/mma.6515
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence and uniqueness of the solution of a stochastic phase-field problem with multiplicative noises. Phase-field models are typically used to describe melting and solidification processes. We consider here the case of multiplicative noises induced by a Q-Brownian motion.
引用
收藏
页码:8538 / 8567
页数:30
相关论文
共 19 条
[1]   A phase field system perturbed by noise [J].
Barbu, V ;
Da Prato, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (06) :1087-1099
[2]  
Bennett C., 1988, INTERPOLATION OPERAT, V129
[3]   Stochastic phase field equations:: Existence and uniqueness [J].
Bertini, L ;
Brassesco, S ;
Buttà, P ;
Presutti, E .
ANNALES HENRI POINCARE, 2002, 3 (01) :87-98
[4]  
Brochet D., 1993, Applicable Analysis, V49, P197, DOI 10.1080/00036819108840173
[5]  
CAGINALP G, 1986, ARCH RATION MECH AN, V92, P205
[6]  
Cheney Ward, 2013, ANAL APPL MATH, V208
[7]  
Da Prato Giuseppe, 2014, Encyclopedia of Mathematics and its Applications, DOI [DOI 10.1017/CBO9781107295513, 10.1017/CBO9781107295513]
[8]   Stochastic systems of diffusion equations with polynomial reaction terms [J].
Du Pham ;
Phuong Nguyen .
ASYMPTOTIC ANALYSIS, 2016, 99 (1-2) :125-161
[9]  
Funaki T, 2012, LECT NOTES
[10]  
Gawarecki L, 2011, PROBAB APPL SER, P3, DOI 10.1007/978-3-642-16194-0