ON THE LOCAL EXISTENCE OF ANALYTIC SOLUTIONS TO THE PRANDTL BOUNDARY LAYER EQUATIONS

被引:0
作者
Kukavica, Igor [1 ]
Vicol, Vlad [2 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Boundary layer; Prandtl equation; well-posedness; real-analyticity; matched asymptotics; inviscid limit; NAVIER-STOKES EQUATIONS; ZERO VISCOSITY LIMIT; EULER EQUATIONS; INVISCID LIMIT; HALF-SPACE; FLOW; SINGULARITY; POSEDNESS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the local well-posedness of the Prandtl boundary layer equations. Using a new change of variables we allow for more general data than previously considered, that is, we require the matching at the top of the boundary layer to beat a polynomial rather than exponential rate. The proof is direct, via analytic energy estimates in the tangential variables.
引用
收藏
页码:269 / 292
页数:24
相关论文
共 38 条
[1]  
[Anonymous], 2000, ACTA MATH SIN ENGL S
[2]   A NOTE ON THE ABSTRACT CAUCHY-KOWALEWSKI THEOREM [J].
ASANO, K .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1988, 64 (04) :102-105
[3]  
Bardos C., 1977, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, V4, P647
[4]  
Batchelor G. K., 1999, INTRO FLUID DYNAMICS, DOI DOI 10.1016/0017-9310(68)90038-0
[5]  
Caflisch RE, 2000, Z ANGEW MATH MECH, V80, P733, DOI 10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO
[6]  
2-L
[7]  
Constantin P, 1996, INDIANA U MATH J, V45, P67
[8]   INVISCID LIMIT FOR VORTEX PATCHES [J].
CONSTANTIN, P ;
WU, JH .
NONLINEARITY, 1995, 8 (05) :735-742
[9]  
Cousteix J., 2007, Asymptotic analysis and boundary layers, DOI DOI 10.1007/978-3-540-46489-1
[10]   Singularity formation for Prandtl's equations [J].
Gargano, F. ;
Sammartino, M. ;
Sciacca, V. .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (19) :1975-1991