ON THE LOCAL EXISTENCE OF ANALYTIC SOLUTIONS TO THE PRANDTL BOUNDARY LAYER EQUATIONS

被引:0
作者
Kukavica, Igor [1 ]
Vicol, Vlad [2 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Boundary layer; Prandtl equation; well-posedness; real-analyticity; matched asymptotics; inviscid limit; NAVIER-STOKES EQUATIONS; ZERO VISCOSITY LIMIT; EULER EQUATIONS; INVISCID LIMIT; HALF-SPACE; FLOW; SINGULARITY; POSEDNESS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the local well-posedness of the Prandtl boundary layer equations. Using a new change of variables we allow for more general data than previously considered, that is, we require the matching at the top of the boundary layer to beat a polynomial rather than exponential rate. The proof is direct, via analytic energy estimates in the tangential variables.
引用
收藏
页码:269 / 292
页数:24
相关论文
共 38 条
  • [1] [Anonymous], 2000, ACTA MATH SIN ENGL S
  • [2] A NOTE ON THE ABSTRACT CAUCHY-KOWALEWSKI THEOREM
    ASANO, K
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1988, 64 (04) : 102 - 105
  • [3] Bardos C., 1977, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, V4, P647
  • [4] Batchelor G. K., 1999, INTRO FLUID DYNAMICS, DOI DOI 10.1016/0017-9310(68)90038-0
  • [5] Caflisch RE, 2000, Z ANGEW MATH MECH, V80, P733, DOI 10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO
  • [6] 2-L
  • [7] Constantin P, 1996, INDIANA U MATH J, V45, P67
  • [8] INVISCID LIMIT FOR VORTEX PATCHES
    CONSTANTIN, P
    WU, JH
    [J]. NONLINEARITY, 1995, 8 (05) : 735 - 742
  • [9] Cousteix J., 2007, Asymptotic analysis and boundary layers, DOI DOI 10.1007/978-3-540-46489-1
  • [10] Singularity formation for Prandtl's equations
    Gargano, F.
    Sammartino, M.
    Sciacca, V.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (19) : 1975 - 1991