Anderson localization for two interacting quasiperiodic particles

被引:17
作者
Bourgain, Jean [1 ]
Kachkovskiy, Ilya [2 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
LATTICE SCHRODINGER-OPERATORS; STATES;
D O I
10.1007/s00039-019-00478-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a system of two discrete quasiperiodic 1D particles as an operator on 2(Z2) and establish Anderson localization at large disorder, assuming the potential has no cosine-type symmetries. In the presence of symmetries, we show localization outside of a neighborhood of finitely many energies. One can also add a deterministic background potential of low complexity, which includes periodic backgrounds and finite range interaction potentials. Such background potentials can only take finitely many values, and the excluded energies in the symmetric case are associated to those values.
引用
收藏
页码:3 / 43
页数:41
相关论文
共 50 条
  • [31] Chaos and Anderson-like localization in polydisperse granular chains
    Achilleos, V
    Theocharis, G.
    Skokos, Ch
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [32] Are the critical exponents for Anderson localization due to disorder well understood?
    Zhang, Z. D.
    March, N. H.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2011, 49 (03) : 816 - 820
  • [33] High Fidelity and Fast Population Transfer in a System of Interacting Two-Level Particles via Optimal Control
    Guo, Yu
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (12) : 3865 - 3873
  • [34] Reentrant localization transitions and anomalous spectral properties in off-diagonal quasiperiodic systems
    Tabanelli, Hugo
    Castelnovo, Claudio
    Strkalj, Antonio
    PHYSICAL REVIEW B, 2024, 110 (18)
  • [35] Many-Body Localization for Randomly Interacting Bosons
    Sierant, P.
    Delande, D.
    Zakrzewski, J.
    ACTA PHYSICA POLONICA A, 2017, 132 (06) : 1707 - 1712
  • [36] The Weak Localization for the Alloy-Type Anderson Model on a Cubic Lattice
    Cao, Zhenwei
    Elgart, Alexander
    JOURNAL OF STATISTICAL PHYSICS, 2012, 148 (06) : 1006 - 1039
  • [37] Chaos and Statistical Relaxation in Quantum Systems of Interacting Particles
    Santos, L. F.
    Borgonovi, F.
    Izrailev, F. M.
    PHYSICAL REVIEW LETTERS, 2012, 108 (09)
  • [38] Non-conventional Anderson localization in a matched quarter stack with metamaterials
    Torres-Herrera, E. J.
    Izrailev, F. M.
    Makarov, N. M.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [39] A stochastic model of long-range interacting particles
    Gupta, Shamik
    Dauxois, Thierry
    Ruffo, Stefano
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [40] Anderson localization for radial tree-like random quantum graphs
    Hislop, Peter D.
    Post, Olaf
    WAVES IN RANDOM AND COMPLEX MEDIA, 2009, 19 (02) : 216 - 261