Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products

被引:57
作者
Adeboye, Peter Temitope [1 ]
Bettiga, Maurizio [1 ]
Aldaeus, Fredrik [2 ]
Larsson, Per Tomas [2 ]
Olsson, Lisbeth [1 ]
机构
[1] Chalmers, Dept Biol & Biol Engn, Ind Biotechnol, S-41296 Gothenburg, Sweden
[2] Innventia AB, S-11428 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Biorefinery; Phenolic compounds; Conversion; Coniferyl aldehyde; Ferulic acid; p-Coumaric acid; FERMENTATION; INHIBITORS; DETOXIFICATION; YEASTS; PULP;
D O I
10.1186/s12934-015-0338-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Lignocellulosic substrates and pulping process streams are of increasing relevance to biorefineries for second generation biofuels and biochemical production. They are known to be rich in sugars and inhibitors such as phenolic compounds, organic acids and furaldehydes. Phenolic compounds are a group of aromatic compounds known to be inhibitory to fermentative organisms. It is known that inhibition of Sacchromyces cerevisiae varies among phenolic compounds and the yeast is capable of in situ catabolic conversion and metabolism of some phenolic compounds. In an approach to engineer a S. cerevisiae strain with higher tolerance to phenolic inhibitors, we selectively investigated the metabolic conversion and physiological effects of coniferyl aldehyde, ferulic acid, and p-coumaric acid in Saccharomyces cerevisiae. Aerobic batch cultivations were separately performed with each of the three phenolic compounds. Conversion of each of the phenolic compounds was observed on time-based qualitative analysis of the culture broth to monitor various intermediate and final metabolites. Result: Coniferyl aldehyde was rapidly converted within the first 24 h, while ferulic acid and p-coumaric acid were more slowly converted over a period of 72 h. The conversion of the three phenolic compounds was observed to involved several transient intermediates that were concurrently formed and converted to other phenolic products. Although there were several conversion products formed from coniferyl aldehyde, ferulic acid and p-coumaric acid, the conversion products profile from the three compounds were similar. On the physiology of Saccharomyces cerevisiae, the maximum specific growth rates of the yeast was not affected in the presence of coniferyl aldehyde or ferulic acid, but it was significantly reduced in the presence of p-coumaric acid. The biomass yields on glucose were reduced to 73 and 54 % of the control in the presence of coniferyl aldehyde and ferulic acid, respectively, biomass yield increased to 127 % of the control in the presence of p-coumaric acid. Coniferyl aldehyde, ferulic acid and p-coumaric acid and their conversion products were screened for inhibition, the conversion products were less inhibitory than coniferyl aldehyde, ferulic acid and p-coumaric acid, indicating that the conversion of the three compounds by Saccharomyces cerevisiae was also a detoxification process. Conclusion: We conclude that the conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid into less inhibitory compounds is a form of stress response and a detoxification process. We hypothesize that all phenolic compounds are converted by Saccharomyces cerevisiae using the same metabolic process. We suggest that the enhancement of the ability of S. cerevisiae to convert toxic phenolic compounds into less inhibitory compounds is a potent route to developing a S. cerevisiae with superior tolerance to phenolic compounds.
引用
收藏
页数:14
相关论文
共 27 条
[1]   The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates [J].
Adeboye, Peter Temitope ;
Bettiga, Maurizio ;
Olsson, Lisbeth .
AMB EXPRESS, 2014, 4 :1-10
[2]   Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae [J].
Almeida, Jodo R. M. ;
Modig, Tobias ;
Petersson, Anneli ;
Hahn-Hagerdal, Barbel ;
Liden, Gunnar ;
Gorwa-Grauslund, Marie F. .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2007, 82 (04) :340-349
[3]   The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae [J].
Ask, Magnus ;
Bettiga, Maurizio ;
Mapelli, Valeria ;
Olsson, Lisbeth .
BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
[4]   INHIBITION OF SACCHAROMYCES-CEREVISIAE BY NATURALLY-OCCURRING HYDROXYCINNAMATES [J].
BARANOWSKI, JD ;
DAVIDSON, PM ;
NAGEL, CW ;
BRANEN, AL .
JOURNAL OF FOOD SCIENCE, 1980, 45 (03) :592-594
[5]  
Biermann C.J., 1996, Handbook of Pulping and Papermaking, V2nd, P55
[6]  
Borregaard, 2014, ETH PROD
[7]  
Brown RC, 2003, BIORENEWABLE RESOURC, Vxii, P286
[8]   PAD1 ENCODES PHENYLACRYLIC ACID DECARBOXYLASE WHICH CONFERS RESISTANCE TO CINNAMIC ACID IN SACCHAROMYCES-CEREVISIAE [J].
CLAUSEN, M ;
LAMB, CJ ;
MEGNET, R ;
DOERNER, PW .
GENE, 1994, 142 (01) :107-112
[9]   CHEMICAL ASPECTS OF KRAFT PULPING [J].
GIERER, J .
WOOD SCIENCE AND TECHNOLOGY, 1980, 14 (04) :241-266
[10]  
Guss CO, 1945, R1481 DEP AGR FOR SE