Quantum-Enhanced Optical-Phase Tracking

被引:192
|
作者
Yonezawa, Hidehiro [3 ]
Nakane, Daisuke [3 ]
Wheatley, Trevor A. [2 ,3 ,5 ]
Iwasawa, Kohjiro [3 ]
Takeda, Shuntaro [3 ]
Arao, Hajime [3 ]
Ohki, Kentaro [6 ]
Tsumura, Koji [7 ]
Berry, Dominic W. [8 ,9 ]
Ralph, Timothy C. [2 ,10 ]
Wiseman, Howard M. [1 ,4 ]
Huntington, Elanor H. [2 ,5 ]
Furusawa, Akira [3 ]
机构
[1] Griffith Univ, Ctr Quantum Dynam, Brisbane, Qld 4111, Australia
[2] Australian Res Council, Ctr Quantum Computat & Commun Technol, Canberra, ACT, Australia
[3] Univ Tokyo, Dept Appl Phys, Sch Engn, Bunkyo Ku, Tokyo 1138656, Japan
[4] Griffith Univ, Ctr Quantum Computat & Commun Technol, Brisbane, Qld 4111, Australia
[5] Univ New S Wales, Sch Engn & Informat Technol, Univ Coll, Canberra, ACT 2600, Australia
[6] Kyoto Univ, Dept Appl Math & Phys, Sch Informat, Sakyo Ku, Kyoto 6068501, Japan
[7] Univ Tokyo, Dept Informat Phys & Comp, Bunkyo Ku, Tokyo 1130033, Japan
[8] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[9] Macquarie Univ, Dept Phys & Astron, N Ryde, NSW 2109, Australia
[10] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
LIMIT;
D O I
10.1126/science.1225258
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tracking a randomly varying optical phase is a key task in metrology, with applications in optical communication. The best precision for optical-phase tracking has until now been limited by the quantum vacuum fluctuations of coherent light. Here, we surpass this coherent-state limit by using a continuous-wave beam in a phase-squeezed quantum state. Unlike in previous squeezing-enhanced metrology, restricted to phases with very small variation, the best tracking precision (for a fixed light intensity) is achieved for a finite degree of squeezing because of Heisenberg's uncertainty principle. By optimizing the squeezing, we track the phase with a mean square error 15 +/- 4% below the coherent-state limit.
引用
收藏
页码:1514 / 1517
页数:4
相关论文
共 50 条
  • [31] Quantum-enhanced plasmonic sensing
    Dowran, Mohammadjavad
    Kumar, Ashok
    Lawrie, Benjamin J.
    Pooser, Raphael C.
    Marino, Alberto M.
    OPTICA, 2018, 5 (05): : 628 - 633
  • [32] Quantum-enhanced filter: QFilter
    Atchade-Adelomou, Parfait
    Alonso-Linaje, Guillermo
    SOFT COMPUTING, 2022, 26 (15) : 7167 - 7174
  • [33] Ab initio quantum-enhanced optical phase estimation using real-time feedback control
    Berni, Adriano A.
    Gehring, Tobias
    Nielsen, Bo M.
    Haendchen, Vitus
    Paris, Matteo G. A.
    Andersen, Ulrik L.
    NATURE PHOTONICS, 2015, 9 (09) : 577 - +
  • [34] Sensitivity of Quantum-Enhanced Interferometers
    Salykina, Dariya
    Khalili, Farid
    SYMMETRY-BASEL, 2023, 15 (03):
  • [35] Quantum-Enhanced Transmittance Sensing
    Gong, Zihao
    Rodriguez, Nathaniel
    Gagatsos, Christos N.
    Guha, Saikat
    Bash, Boulat A.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2023, 17 (02) : 473 - 490
  • [36] Quantum-enhanced absorption refrigerators
    Luis A. Correa
    José P. Palao
    Daniel Alonso
    Gerardo Adesso
    Scientific Reports, 4
  • [37] Quantum-enhanced Doppler lidar
    Maximilian Reichert
    Roberto Di Candia
    Moe Z. Win
    Mikel Sanz
    npj Quantum Information, 8
  • [38] Quantum-Enhanced Pattern Recognition
    Ortolano G.
    Napoli C.
    Harney C.
    Pirandola S.
    Leonetti G.
    Boucher P.
    Losero E.
    Genovese M.
    Ruo-Berchera I.
    Physical Review Applied, 2023, 20 (02)
  • [39] Quantum-enhanced Doppler lidar
    Reichert, Maximilian
    Di Candia, Roberto
    Win, Moe Z.
    Sanz, Mikel
    NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [40] Quantum-Enhanced Machine Learning
    Dunjko, Vedran
    Taylor, Jacob M.
    Briegel, Hans J.
    PHYSICAL REVIEW LETTERS, 2016, 117 (13)