Quantum-Enhanced Optical-Phase Tracking

被引:192
|
作者
Yonezawa, Hidehiro [3 ]
Nakane, Daisuke [3 ]
Wheatley, Trevor A. [2 ,3 ,5 ]
Iwasawa, Kohjiro [3 ]
Takeda, Shuntaro [3 ]
Arao, Hajime [3 ]
Ohki, Kentaro [6 ]
Tsumura, Koji [7 ]
Berry, Dominic W. [8 ,9 ]
Ralph, Timothy C. [2 ,10 ]
Wiseman, Howard M. [1 ,4 ]
Huntington, Elanor H. [2 ,5 ]
Furusawa, Akira [3 ]
机构
[1] Griffith Univ, Ctr Quantum Dynam, Brisbane, Qld 4111, Australia
[2] Australian Res Council, Ctr Quantum Computat & Commun Technol, Canberra, ACT, Australia
[3] Univ Tokyo, Dept Appl Phys, Sch Engn, Bunkyo Ku, Tokyo 1138656, Japan
[4] Griffith Univ, Ctr Quantum Computat & Commun Technol, Brisbane, Qld 4111, Australia
[5] Univ New S Wales, Sch Engn & Informat Technol, Univ Coll, Canberra, ACT 2600, Australia
[6] Kyoto Univ, Dept Appl Math & Phys, Sch Informat, Sakyo Ku, Kyoto 6068501, Japan
[7] Univ Tokyo, Dept Informat Phys & Comp, Bunkyo Ku, Tokyo 1130033, Japan
[8] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[9] Macquarie Univ, Dept Phys & Astron, N Ryde, NSW 2109, Australia
[10] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
LIMIT;
D O I
10.1126/science.1225258
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tracking a randomly varying optical phase is a key task in metrology, with applications in optical communication. The best precision for optical-phase tracking has until now been limited by the quantum vacuum fluctuations of coherent light. Here, we surpass this coherent-state limit by using a continuous-wave beam in a phase-squeezed quantum state. Unlike in previous squeezing-enhanced metrology, restricted to phases with very small variation, the best tracking precision (for a fixed light intensity) is achieved for a finite degree of squeezing because of Heisenberg's uncertainty principle. By optimizing the squeezing, we track the phase with a mean square error 15 +/- 4% below the coherent-state limit.
引用
收藏
页码:1514 / 1517
页数:4
相关论文
共 50 条
  • [11] Quantum-enhanced estimation of the optical phase gradient by use of image-inversion interferometry
    Larson, Walker
    Saleh, Bahaa E. A.
    PHYSICAL REVIEW A, 2020, 102 (01)
  • [12] Opportunities and Challenges in Quantum-Enhanced Optical Target Detection
    Liu, Han
    Helmy, Amr S.
    ACS PHOTONICS, 2025, 12 (03): : 1256 - 1258
  • [13] A quantum-enhanced wide-field phase imager
    Camphausen, Robin
    Cuevas, Alvaro
    Duempelmann, Luc
    Terborg, Roland A.
    Wajs, Ewelina
    Tisa, Simone
    Ruggeri, Alessandro
    Cusini, Iris
    Steinlechner, Fabian
    Pruneri, Valerio
    SCIENCE ADVANCES, 2021, 7 (47)
  • [14] Experimental quantum-enhanced estimation of a lossy phase shift
    Kacprowicz, M.
    Demkowicz-Dobrzanski, R.
    Wasilewski, W.
    Banaszek, K.
    Walmsley, I. A.
    NATURE PHOTONICS, 2010, 4 (06) : 357 - 360
  • [15] Quantum-enhanced phase estimation with an amplified Bell state
    Sahota, Jaspreet
    James, Daniel F. V.
    PHYSICAL REVIEW A, 2013, 88 (06)
  • [16] Quantum-enhanced metrology for multiple phase estimation with noise
    Yue J.-D.
    Zhang Y.-R.
    Fan H.
    Scientific Reports, 4 (1)
  • [17] Gaussian systems for quantum-enhanced multiple phase estimation
    Gagatsos, Christos N.
    Branford, Dominic
    Datta, Animesh
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [18] Experimental quantum-enhanced estimation of a lossy phase shift
    Kacprowicz M.
    Demkowicz-Dobrzański R.
    Wasilewski W.
    Banaszek K.
    Walmsley I.A.
    Nature Photonics, 2010, 4 (6) : 357 - 360
  • [19] Quantum-enhanced phase imaging without coincidence counting
    Black, A. Nicholas
    Nguyen, Long D.
    Braverman, Boris
    Crampton, Kevin T.
    Evans, James E.
    Boyd, Robert W.
    OPTICA, 2023, 10 (07): : 952 - 958
  • [20] Quantum-Enhanced Capture of Photons Using Optical Ratchet States
    Higgins, K. D. B.
    Lovett, B. W.
    Gauger, E. M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (38): : 20714 - 20719