Quantum-Enhanced Optical-Phase Tracking

被引:192
作者
Yonezawa, Hidehiro [3 ]
Nakane, Daisuke [3 ]
Wheatley, Trevor A. [2 ,3 ,5 ]
Iwasawa, Kohjiro [3 ]
Takeda, Shuntaro [3 ]
Arao, Hajime [3 ]
Ohki, Kentaro [6 ]
Tsumura, Koji [7 ]
Berry, Dominic W. [8 ,9 ]
Ralph, Timothy C. [2 ,10 ]
Wiseman, Howard M. [1 ,4 ]
Huntington, Elanor H. [2 ,5 ]
Furusawa, Akira [3 ]
机构
[1] Griffith Univ, Ctr Quantum Dynam, Brisbane, Qld 4111, Australia
[2] Australian Res Council, Ctr Quantum Computat & Commun Technol, Canberra, ACT, Australia
[3] Univ Tokyo, Dept Appl Phys, Sch Engn, Bunkyo Ku, Tokyo 1138656, Japan
[4] Griffith Univ, Ctr Quantum Computat & Commun Technol, Brisbane, Qld 4111, Australia
[5] Univ New S Wales, Sch Engn & Informat Technol, Univ Coll, Canberra, ACT 2600, Australia
[6] Kyoto Univ, Dept Appl Math & Phys, Sch Informat, Sakyo Ku, Kyoto 6068501, Japan
[7] Univ Tokyo, Dept Informat Phys & Comp, Bunkyo Ku, Tokyo 1130033, Japan
[8] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[9] Macquarie Univ, Dept Phys & Astron, N Ryde, NSW 2109, Australia
[10] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
LIMIT;
D O I
10.1126/science.1225258
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tracking a randomly varying optical phase is a key task in metrology, with applications in optical communication. The best precision for optical-phase tracking has until now been limited by the quantum vacuum fluctuations of coherent light. Here, we surpass this coherent-state limit by using a continuous-wave beam in a phase-squeezed quantum state. Unlike in previous squeezing-enhanced metrology, restricted to phases with very small variation, the best tracking precision (for a fixed light intensity) is achieved for a finite degree of squeezing because of Heisenberg's uncertainty principle. By optimizing the squeezing, we track the phase with a mean square error 15 +/- 4% below the coherent-state limit.
引用
收藏
页码:1514 / 1517
页数:4
相关论文
共 25 条
[1]  
Abadie J, 2011, NAT PHYS, V7, P962, DOI [10.1038/nphys2083, 10.1038/NPHYS2083]
[2]  
[Anonymous], 2009, Stochastic Methods
[3]   Adaptive homodyne measurement of optical phase [J].
Armen, MA ;
Au, JK ;
Stockton, JK ;
Doherty, AC ;
Mabuchi, H .
PHYSICAL REVIEW LETTERS, 2002, 89 (13)
[4]   Adaptive phase measurements for narrowband squeezed beams [J].
Berry, Dominic W. ;
Wiseman, Howard M. .
PHYSICAL REVIEW A, 2006, 73 (06)
[5]   Optimal states and almost optimal adaptive measurements for quantum interferometry [J].
Berry, DW ;
Wiseman, HM .
PHYSICAL REVIEW LETTERS, 2000, 85 (24) :5098-5101
[6]   Adaptive quantum measurements of a continuously varying phase [J].
Berry, DW ;
Wiseman, HM .
PHYSICAL REVIEW A, 2002, 65 (04) :438031-438034
[7]   QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER [J].
CAVES, CM .
PHYSICAL REVIEW D, 1981, 23 (08) :1693-1708
[8]  
Chen J, 2012, NAT PHOTONICS, V6, P374, DOI [10.1038/nphoton.2012.113, 10.1038/NPHOTON.2012.113]
[9]   Quantum-enhanced measurements: Beating the standard quantum limit [J].
Giovannetti, V ;
Lloyd, S ;
Maccone, L .
SCIENCE, 2004, 306 (5700) :1330-1336
[10]  
Giovannetti V, 2011, NAT PHOTONICS, V5, P222, DOI [10.1038/nphoton.2011.35, 10.1038/NPHOTON.2011.35]