Faradaically selective membrane for liquid metal displacement batteries

被引:75
作者
Yin, Huayi [1 ,2 ]
Chung, Brice [1 ]
Chen, Fei [1 ,3 ]
Ouchi, Takanari [1 ]
Zhao, Ji [1 ]
Tanaka, Nobuyuki [1 ,4 ]
Sadoway, Donald R. [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] Northeastern Univ, Sch Met, Shenyang, Liaoning, Peoples R China
[3] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan, Hubei, Peoples R China
[4] Japan Atom Energy Agcy, Nucl Hydrogen & Heat Applicat Res Ctr, Ibaraki, Japan
关键词
ELECTRICAL ENERGY-STORAGE; NICKEL CHLORIDE BATTERY;
D O I
10.1038/s41560-017-0072-1
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In the realm of stationary energy storage, a plurality of candidate chemistries continues to vie for acceptance, among them the Na-NiCl2 displacement battery, which has eluded widespread adoption owing to the fragility of the beta"-Al2O3 membrane. Here we report a porous electronically conductive membrane, which achieves chemical selectivity by preferred faradaic reaction instead of by regulated ionic conduction. Fitted with a porous membrane of TiN, a displacement cell comprising a liquid Pb positive electrode, a liquid Li-Pb negative electrode and a molten-salt electrolyte of PbCl2 dissolved in LiCl-KCl eutectic was cycled at a current density of 150 mA cm(-2) at a temperature of 410 degrees C and exhibited a coulombic efficiency of 92% and a round-trip energy efficiency of 71%. As an indication of industrial scalability, we show comparable performance in a cell fitted with a faradaic membrane fashioned out of porous metal.
引用
收藏
页码:127 / 131
页数:5
相关论文
共 16 条
[1]   On the importance of reducing the energetic and material demands of electrical energy storage [J].
Barnhart, Charles J. ;
Benson, Sally M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1083-1092
[2]   Sodium nickel chloride battery technology for large-scale stationary storage in the high voltage network [J].
Benato, Roberto ;
Cosciani, Nicola ;
Crugnola, Giorgio ;
Sessa, Sebastian Dambone ;
Lodi, Giuseppe ;
Parmeggiani, Carlo ;
Todeschini, Marco .
JOURNAL OF POWER SOURCES, 2015, 293 :127-136
[3]   A NEW HIGH-ENERGY DENSITY BATTERY SYSTEM [J].
COETZER, J .
JOURNAL OF POWER SOURCES, 1986, 18 (04) :377-380
[4]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[5]   Thermodynamic study of liquid lithium-lead alloys using the EMF method [J].
Gasior, W ;
Moser, Z .
JOURNAL OF NUCLEAR MATERIALS, 2001, 294 (1-2) :77-83
[6]   High temperature sodium batteries: status, challenges and future trends [J].
Hueso, Karina B. ;
Armand, Michel ;
Rojo, Teofilo .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (03) :734-749
[7]   Low temperature performance of sodium-nickel chloride batteries with NaSICON solid electrolyte [J].
Kim, Jeongsoo ;
Jo, Seung Hwan ;
Bhavaraju, Sai ;
Eccleston, Alexis ;
Kang, Sang Ook .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2015, 759 :201-206
[8]  
Kummer J. T., 1968, US Patent, Patent No. [3413150, 3,413,150]
[9]   Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage [J].
Lu, Xiaochuan ;
Li, Guosheng ;
Kim, Jin Y. ;
Mei, Donghai ;
Lemmon, John P. ;
Sprenkle, Vincent L. ;
Liu, Jun .
NATURE COMMUNICATIONS, 2014, 5
[10]   Advanced intermediate-temperature Na-S battery [J].
Lu, Xiaochuan ;
Kirby, Brent W. ;
Xu, Wu ;
Li, Guosheng ;
Kim, Jin Y. ;
Lemmon, John P. ;
Sprenkle, Vincent L. ;
Yang, Zhenguo .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (01) :299-306