Global solutions and finite time blow up for some system of nonlinear wave equations

被引:7
作者
Xiao, Wei [1 ]
Ping, Yan [2 ]
机构
[1] Changan Univ, Sch Sci, Xian 710064, Peoples R China
[2] Anhui Agr Univ, Sch Sci, Hefei 230036, Peoples R China
关键词
Global solutions; Blow up; Nonlinear wave equations; Initial boundary value; LIFE-SPAN; EXISTENCE; NONEXISTENCE;
D O I
10.1016/j.amc.2012.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An initial boundary value problem for systems of semi-linear wave equations in a bounded domain is considered. The global existence, uniqueness and blow-up of solutions by energy methods and give some estimates for the lifespan of solutions are proved. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:3754 / 3768
页数:15
相关论文
共 24 条
[1]  
[Anonymous], 1965, Proc. Symp. Appl. Math.
[2]  
[Anonymous], 1970, NONLINEAR WAVE EQUAT
[3]   Finite-time blow-up of solutions to semilinear wave equations [J].
Belchev, E ;
Kepka, M ;
Zhou, ZF .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 190 (01) :233-254
[4]  
Browder F.E., 1962, Math. Z., V80, P249
[5]  
DELSANTO D, 1997, GEOMETRIC OPTICS REL, P117
[6]   Global solutions and finite time blow up for damped semilinear wave equations [J].
Gazzola, F ;
Squassina, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (02) :185-207
[7]   THE GLOBAL CAUCHY-PROBLEM FOR THE NON-LINEAR KLEIN-GORDON EQUATION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1985, 189 (04) :487-505
[8]   FINITE-TIME BLOW-UP FOR SOLUTIONS OF NON-LINEAR WAVE-EQUATIONS [J].
GLASSEY, RT .
MATHEMATISCHE ZEITSCHRIFT, 1981, 177 (03) :323-340
[9]   GLOBAL EXISTENCE FOR NON-LINEAR WAVE-EQUATIONS [J].
KLAINERMAN, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (01) :43-101
[10]   INSTABILITY AND NONEXISTENCE OF GLOBAL SOLUTIONS TO NONLINEAR-WAVE EQUATIONS OF FORM PUTT = -AU + F(U) [J].
LEVINE, HA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 192 :1-21