Approximate Invariance for Ergodic Actions of Amenable Groups

被引:6
作者
Bjorklund, Michael [1 ]
Fish, Alexander [2 ]
机构
[1] Chalmers, Dept Math, Gothenburg, Sweden
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW, Australia
基金
芬兰科学院;
关键词
Action sets; aperiodicity; density theorems; PRODUCT SET PHENOMENA; DENSITY; THEOREM;
D O I
10.19086/da.8471
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop in this paper some general techniques to analyze action sets of small doubling for probability measure-preserving actions of amenable groups. As an application of these techniques, we prove a dynamical generalization of Kneser's celebrated density theorem for subsets in (Z, +), valid for any countable amenable group, and we show how it can be used to establish a plethora of new inverse product set theorems for upper and lower asymptotic densities. We provide several examples demonstrating that our results are optimal for the settings under study.
引用
收藏
页数:56
相关论文
共 30 条
[1]  
[Anonymous], 1972, N HOLLAND MATH LIB
[2]   WM groups and Ramsey theory [J].
Bergelson, Vitaly ;
Furstenberg, Hillel .
TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (16) :2572-2580
[3]   Product set phenomena for countable groups [J].
Bjoerklund, Michael ;
Fish, Alexander .
ADVANCES IN MATHEMATICS, 2015, 275 :47-113
[4]   Product set phenomena for measured groups [J].
Bjorklund, Michael .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 :2913-2941
[5]   APPROXIMATE LATTICES [J].
Bjorklund, Michael ;
Hartnick, Tobias .
DUKE MATHEMATICAL JOURNAL, 2018, 167 (15) :2903-2964
[6]   Ergodic theorems for coset spaces [J].
Bjorklund, Michael ;
Fish, Alexander .
JOURNAL D ANALYSE MATHEMATIQUE, 2018, 135 (01) :85-122
[7]   Aperiodic order and spherical diffraction, I: auto-correlation of regular model sets [J].
Bjorklund, Michael ;
Hartnick, Tobias ;
Pogorzelski, Felix .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 116 :957-996
[8]   Small product sets in compact groups [J].
Bjorklund, Michael .
FUNDAMENTA MATHEMATICAE, 2017, 238 (01) :1-27
[9]  
Bjorklund Michael, ARXIV1709099423
[10]  
BOURGAIN J., 2008, Ann. of Math., V167, P625