Operator monotone functions and Lowner functions of several variables

被引:44
作者
Agler, Jim [1 ]
McCarthy, John E. [2 ,3 ]
Young, N. J. [4 ,5 ]
机构
[1] Univ Calif San Diego, La Jolla, CA USA
[2] Washington Univ, St Louis, MO USA
[3] Trinity Coll Dublin, Dublin, Ireland
[4] Univ Leeds, Leeds, W Yorkshire, England
[5] Newcastle Univ, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
NEVANLINNA-PICK INTERPOLATION; BOUNDARY; THEOREM;
D O I
10.4007/annals.2012.176.3.7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove generalizations of Lowner's results on matrix monotone functions to several variables. We give a characterization of when a function of d variables is locally monotone on d-tuples of commuting self-adjoint n-by-n matrices. We prove a generalization to several variables of Nevanlinna's theorem describing analytic functions that map the upper half-plane to itself and satisfy a growth condition. We use this to characterize all rational functions of two variables that are operator monotone.
引用
收藏
页码:1783 / 1826
页数:44
相关论文
共 39 条
[1]   The Julia-Wolff-Caratheodory theorem in polydisks [J].
Abate, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 74 (1) :275-306
[2]  
AGLER J., 1990, TOPICS OPERATOR THEO, V48, P47
[3]  
AGLER J., 2002, GRAD STUDIES MATH AM
[4]   A Carath,odory theorem for the bidisk via Hilbert space methods [J].
Agler, Jim ;
McCarthy, John E. ;
Young, N. J. .
MATHEMATISCHE ANNALEN, 2012, 352 (03) :581-624
[5]  
[Anonymous], 2013, TEXTS APPL MATH
[6]  
ARKHANGEL'SKII A., 1990, ENCY MATH SCI, V17
[7]   Scattering systems with several evolutions and multidimensional input/state/output systems [J].
Ball, JA ;
Sadosky, C ;
Vinnikov, V .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 52 (03) :323-393
[8]   Unitary colligations, reproducing Kernel Hilbert spaces, and Nevanlinna-Pick interpolation in several variables [J].
Ball, JA ;
Trent, TT .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 157 (01) :1-61
[9]   A tangential interpolation problem on the distinguished boundary of the polydisk for the Schur-Agler class [J].
Ball, JA ;
Bolotnikov, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 273 (02) :328-348
[10]  
Ball JA, 2010, CRM PROC & LECT NOTE, V51, P1