Deep structure integrative representation of multi-omics data for cancer subtyping

被引:0
作者
Yang, Bo [1 ,2 ]
Yang, Yan [1 ]
Su, Xueping [3 ]
机构
[1] Xian Polytech Univ, Sch Comp Sci, Xian 710048, Peoples R China
[2] Univ Toronto, Donnelly Ctr Cellular & Biomol Res, Toronto, ON M5S 3E1, Canada
[3] Xian Polytech Univ, Sch Elect & Informat, Xian 710048, Peoples R China
基金
中国国家自然科学基金;
关键词
LATENT VARIABLE MODEL; CLASS DISCOVERY; GENOMIC DATA;
D O I
10.1093/bioinformaticsibtac345
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Cancer is a heterogeneous group of diseases. Cancer subtyping is a crucial and critical step to diagnosis, prognosis and treatment. Since high-throughput sequencing technologies provide an unprecedented opportunity to rapidly collect multi-omics data for the same individuals, an urgent need in current is how to effectively represent and integrate these multi-omics data to achieve clinically meaningful cancer subtyping. Results: We propose a novel deep learning model, called Deep Structure Integrative Representation (DSIR), for cancer subtypes dentification by integrating representation and clustering multi-omics data. DSIR simultaneously captures the global structures in sparse subspace and local structures in manifold subspace from multi-omics data and constructs a consensus similarity matrix by utilizing deep neural networks. Extensive tests are performed in 12 different cancers on three levels of omics data from The Cancer Genome Atlas. The results demonstrate that DSIR obtains more significant performances than the state-of-the-art integrative methods.
引用
收藏
页数:6
相关论文
共 47 条
  • [1] Bacterial utilization of different size classes of dissolved organic matter
    Amon, RMW
    Benner, R
    [J]. LIMNOLOGY AND OCEANOGRAPHY, 1996, 41 (01) : 41 - 51
  • [2] Ferroptosis response segregates small cell lung cancer (SCLC) neuroendocrine subtypes
    Bebber, Christina M.
    Thomas, Emily S.
    Stroh, Jenny
    Chen, Zhiyi
    Androulidaki, Ariadne
    Schmitt, Anna
    Hoehne, Michaela N.
    Stueker, Lukas
    Alves, Cleidson de Padua
    Khonsari, Armin
    Dammert, Marcel A.
    Parmaksiz, Fatma
    Tumbrink, Hannah L.
    Beleggia, Filippo
    Sos, Martin L.
    Riemer, Jan
    George, Julie
    Brodesser, Susanne
    Thomas, Roman K.
    Reinhardt, H. Christian
    von Karstedt, Silvia
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [3] Belizario J.E., 2019, CANC DRUG RESIST, V2, P527
  • [4] Analysis of microarray data using Z score transformation
    Cheadle, C
    Vawter, MP
    Freed, WJ
    Becker, KG
    [J]. JOURNAL OF MOLECULAR DIAGNOSTICS, 2003, 5 (02) : 73 - 81
  • [5] Multiview Subspace Clustering Using Low-Rank Representation
    Chen, Jie
    Yang, Shengxiang
    Mao, Hua
    Fahy, Conor
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (11) : 12364 - 12378
  • [6] Molecular subtypes of pancreatic cancer
    Collisson, Eric A.
    Bailey, Peter
    Chang, David K.
    Biankin, Andrew, V
    [J]. NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2019, 16 (04) : 207 - 220
  • [7] Molecular origins of cancer: Oncogenes and cancer
    Croce, Carlo M.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2008, 358 (05) : 502 - 511
  • [8] Stacked Convolutional Denoising Auto-Encoders for Feature Representation
    Du, Bo
    Xiong, Wei
    Wu, Jia
    Zhang, Lefei
    Zhang, Liangpei
    Tao, Dacheng
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (04) : 1017 - 1027
  • [9] Evaluation and comparison of multi-omics data integration methods for cancer subtyping
    Duan, Ran
    Gao, Lin
    Gao, Yong
    Hu, Yuxuan
    Xu, Han
    Huang, Mingfeng
    Song, Kuo
    Wang, Hongda
    Dong, Yongqiang
    Jiang, Chaoqun
    Zhang, Chenxing
    Jia, Songwei
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (08)
  • [10] Sparse Subspace Clustering: Algorithm, Theory, and Applications
    Elhamifar, Ehsan
    Vidal, Rene
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) : 2765 - 2781