Rapid sonochemical synthesis of mesoporous MnO2 for supercapacitor applications

被引:40
作者
Nayak, Prasant Kumar [1 ]
Munichandraiah, N. [1 ]
机构
[1] Indian Inst Sci, Dept Inorgan & Phys Chem, Bangalore 560012, Karnataka, India
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2012年 / 177卷 / 11期
关键词
Sonochemical; Mesoporous; Manganese dioxide; Surface area; Specific capacitance; CHARGE STORAGE MECHANISM; MANGANESE-DIOXIDE; CAPACITIVE BEHAVIOR; ELECTRODE MATERIAL; PSEUDOCAPACITANCE PROPERTIES; ELECTROCHEMICAL PROPERTIES; HYDROTHERMAL SYNTHESIS; NANOSTRUCTURED MNO2; AMORPHOUS MNO2; OXIDE;
D O I
10.1016/j.mseb.2012.04.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Mesoporous MnO2 samples with average pore-size in the range of 2-20 nm are synthesized in sonochemical method from KMnO4 by using a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123) as a soft template as well as a reducing agent. The MnO2 samples are found to be poorly crystalline. On increasing the amplitude of sonication, a change in the morphology of MnO2 from nanoparticles to nanorods and also change in porosity are observed. A high BET surface area of 245 m(2) g(-1) is achieved for MnO2 sample. The MnO2 samples are subjected to electrochemical capacitance studies by cyclic voltammetry (CV) and galvanostatic charge-discharge cycling in 0.1 M aqueous Ca(NO3)(2) electrolyte. A maximum specific capacitance (SC) of 265 Fg(-1) is obtained for the MnO2 sample synthesized in sonochemical method using an amplitude of 30 mu m. The MnO2 samples also possess good electrochemical stability due to their favourable porous structure and high surface area. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:849 / 854
页数:6
相关论文
共 38 条
[1]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[2]   Lattice vibrations of materials for lithium rechargeable batteries V.: Local structure of Li0.3MnO2 [J].
Banov, B ;
Momchilov, A ;
Massot, M ;
Julien, CM .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2003, 100 (01) :87-92
[3]   Templated synthesis of hierarchically porous manganese oxide with a crystalline nanorod framework and its high electrochemical performance [J].
Chen, Hangrong ;
Dong, Xiaoping ;
Shi, Jianlin ;
Zhao, Jinjin ;
Hua, Zile ;
Gao, Jianhua ;
Ruan, Meiling ;
Yan, Dongsheng .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (09) :855-860
[4]  
Chmiola J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science/1132195
[5]   Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties [J].
Devaraj, S. ;
Munichandraiah, N. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (11) :4406-4417
[6]   Electrochemical supercapacitor studies of nanostructured α-MnO2 synthesized by microemulsion method and the effect of annealing [J].
Devaraj, S. ;
Munichandraiah, N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (02) :A80-A88
[7]   High capacitance of electrodeposited MnO2 by the effect of a surface-active agent [J].
Devaraj, S ;
Munichandraiah, N .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (07) :A373-A377
[8]   Mesoporous MnO2 and Its Capacitive Behavior [J].
Devaraj, S. ;
Gabriel, G. S. ;
Gajjela, S. R. ;
Balaya, P. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2012, 15 (04) :A57-A59
[9]   Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode:: Effects of physisorbed water and proton conduction [J].
Ghaemi, M. ;
Ataherian, F. ;
Zolfaghari, A. ;
Jafari, S. M. .
ELECTROCHIMICA ACTA, 2008, 53 (14) :4607-4614
[10]   Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition [J].
Hu, CC ;
Tsou, TW .
ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (02) :105-109