Gray Cycles of Maximum Length Related to k-Character Substitutions

被引:1
作者
Neraud, Jean [1 ]
机构
[1] Univ Rouen Normandy, LITIS, St Etienne Du Rouvray, France
来源
DESCRIPTIONAL COMPLEXITY OF FORMAL SYSTEMS, DCFS 2021 | 2021年 / 13037卷
关键词
Character; Complexity; Cycle; Gray; Substitution; Relation; Word; CODES;
D O I
10.1007/978-3-030-93489-7_12
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a word binary relation tau onto A* we define a tau-Gray cycle over a finite language X subset of A* to be a permutation (w([i]))(0 <= i <=vertical bar X vertical bar - 1) of X such that each word w(i) is an image of the previous word w(i-1) by tau. We introduce the complexity measure lambda(n), equal to the largest cardinality of a language X having words of length at most n, and such that some tau-Gray cycle over X exists. The present paper is concerned with the relation tau = sigma(k), the so-called k-character substitution, such that (u, v) belongs to sigma(k) if, and( )only if, the Hamming distance of u and v is k. We compute the bound lambda(n) for all cases of the alphabet cardinality and the argument n.
引用
收藏
页码:137 / 149
页数:13
相关论文
共 20 条
[1]  
[Anonymous], 2005, ART COMPUTER PROGRAM, DOI DOI 10.1103/PhysRevLett.93.130502
[2]  
Barcucci E, 1999, J DIFFER EQU APPL, V5, P435
[3]   Prefix partitioned gray codes for particular cross-bifix-free sets [J].
Bernini, Antonio ;
Bilotta, Stefano ;
Pinzani, Renzo ;
Sabri, Ahmad ;
Vajnovszki, Vincent .
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2014, 6 (04) :359-369
[4]   UNIVERSAL CYCLES FOR COMBINATORIAL STRUCTURES [J].
CHUNG, F ;
DIACONIS, P ;
GRAHAM, R .
DISCRETE MATHEMATICS, 1992, 110 (1-3) :43-59
[5]   AFFINE M-ARY GRAY CODES [J].
COHN, M .
INFORMATION AND CONTROL, 1963, 6 (01) :70-&
[6]  
Cohn P.M., 1968, Universal Algebra, Mathematics and Its Applications, V6, DOI DOI 10.1007/978-94-009-8399-1
[7]   AN ALGORITHM FOR GENERATING SUBSETS OF FIXED SIZE WITH A STRONG MINIMAL CHANGE PROPERTY [J].
EADES, P ;
MCKAY, B .
INFORMATION PROCESSING LETTERS, 1984, 19 (03) :131-133
[8]   LOOPLESS ALGORITHMS FOR GENERATING PERMUTATIONS, COMBINATIONS, AND OTHER COMBINATORIAL CONFIGURATIONS [J].
EHRLICH, G .
JOURNAL OF THE ACM, 1973, 20 (03) :500-513
[9]   ON GENERATING THE N-ARY REFLECTED GRAY CODES [J].
ER, MC .
IEEE TRANSACTIONS ON COMPUTERS, 1984, 33 (08) :739-741
[10]  
FREDRICKSEN H, 1978, DISCRETE MATH, V23, P207, DOI 10.1016/0012-365X(78)90002-X