Perturbative interaction approach to cosmological structure formation

被引:4
作者
Ali-Haimoud, Yacine [1 ]
机构
[1] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
来源
PHYSICAL REVIEW D | 2015年 / 91卷 / 10期
关键词
POWER SPECTRUM;
D O I
10.1103/PhysRevD.91.103507
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A new approach to cosmological perturbation theory has been recently introduced by Bartelmann et al., relying on nonequilibrium statistical theory of classical particles, and treating the gravitational interaction perturbatively. They compute analytic expressions for the nonlinear matter power spectrum, to first order in the interaction, and at one-loop order in the linear power spectrum. The resulting power spectrum is well behaved even at large wave numbers and seems in good agreement with results from numerical simulations. In this paper, we rederive their results concisely with a different approach, starting from the implicit integral solution to particle trajectories. We derive the matter power spectrum to first order in the interaction, but to arbitrary order in the linear power spectrum, from which the one-loop result follows. We also show that standard linear perturbation theory can only be recovered at infinite order in the gravitational interaction. At finite order in the interaction, we find that the linear power spectrum is systematically and significantly underestimated. A comprehensive study of the convergence of the theory with the order of the interaction for nonlinear scales will be the subject of future work.
引用
收藏
页数:10
相关论文
共 18 条
[1]   Planck 2013 results. XVI. Cosmological parameters [J].
Ade, P. A. R. ;
Aghanim, N. ;
Armitage-Caplan, C. ;
Arnaud, M. ;
Ashdown, M. ;
Atrio-Barandela, F. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bobin, J. ;
Bock, J. J. ;
Bonaldi, A. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Bridges, M. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cappellini, B. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chary, R. -R. ;
Chen, X. ;
Chiang, H. C. ;
Chiang, L. -Y ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. .
ASTRONOMY & ASTROPHYSICS, 2014, 571
[2]  
Alvarez M., ARXIV14124671
[3]  
Bartelmann M., ARXIV14111153
[4]  
Bartelmann M., ARXIV14111502
[5]  
Bartelmann M., ARXIV14110806
[6]  
Bartelmann M., COMMUNICATION
[7]   Large-scale structure of the Universe and cosmological perturbation theory [J].
Bernardeau, F ;
Colombi, S ;
Gaztañaga, E ;
Scoccimarro, R .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 367 (1-3) :1-248
[8]  
BOUCHET FR, 1995, ASTRON ASTROPHYS, V296, P575
[9]   Critical look at cosmological perturbation theory techniques [J].
Carlson, Jordan ;
White, Martin ;
Padmanabhan, Nikhil .
PHYSICAL REVIEW D, 2009, 80 (04)
[10]   Renormalized cosmological perturbation theory [J].
Crocce, M ;
Scoccimarro, R .
PHYSICAL REVIEW D, 2006, 73 (06)