Intermediates and the folding of proteins L and G

被引:42
作者
Brown, S [1 ]
Head-Gordon, T [1 ]
机构
[1] Univ Calif Berkeley, Donner Lab 472, Dept Bioengn, Berkeley, CA 94720 USA
关键词
intermediates; kinetic mechanism; protein L and G; minimalist model; protein folding;
D O I
10.1110/ps.03316004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G, which are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted beta-1 and beta-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding, and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contacts involving the third P-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally, the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first-order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment.
引用
收藏
页码:958 / 970
页数:13
相关论文
共 50 条
[1]   SPECIFIC NUCLEUS AS THE TRANSITION-STATE FOR PROTEIN-FOLDING - EVIDENCE FROM THE LATTICE MODEL [J].
ABKEVICH, VI ;
GUTIN, AM ;
SHAKHNOVICH, EI .
BIOCHEMISTRY, 1994, 33 (33) :10026-10036
[2]   Simple physical models connect theory and experiment in protein folding kinetics [J].
Alm, E ;
Morozov, AV ;
Kortemme, T ;
Baker, D .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 322 (02) :463-476
[4]   Coarse-grained sequences for protein folding and design [J].
Brown, S ;
Fawzi, NJ ;
Head-Gordon, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (19) :10712-10717
[5]   INTERMEDIATES AND BARRIER CROSSING IN A RANDOM ENERGY-MODEL (WITH APPLICATIONS TO PROTEIN FOLDING) [J].
BRYNGELSON, JD ;
WOLYNES, PG .
JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (19) :6902-6915
[6]   The present view of the mechanism of protein folding [J].
Daggett, V ;
Fersht, A .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2003, 4 (06) :497-502
[7]   Is there a unifying mechanism for protein folding? [J].
Daggett, V ;
Fersht, AR .
TRENDS IN BIOCHEMICAL SCIENCES, 2003, 28 (01) :18-25
[8]   On the transition coordinate for protein folding [J].
Du, R ;
Pande, VS ;
Grosberg, AY ;
Tanaka, T ;
Shakhnovich, ES .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (01) :334-350
[9]   Simulated annealing - Optimal histogram methods [J].
Ferguson, DM ;
Garrett, DG .
MONTE CARLO METHODS IN CHEMICAL PHYSICS, 1999, 105 :311-336
[10]   OPTIMIZED MONTE-CARLO DATA-ANALYSIS [J].
FERRENBERG, AM ;
SWENDSEN, RH .
PHYSICAL REVIEW LETTERS, 1989, 63 (12) :1195-1198