Isogeometric analysis of Lagrangian hydrodynamics: Axisymmetric formulation in the rz-cylindrical coordinates

被引:12
作者
Bazilevs, Y. [1 ]
Long, C. C. [2 ]
Akkerman, I. [3 ]
Benson, D. J. [1 ]
Shashkov, M. J. [4 ]
机构
[1] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92123 USA
[2] Los Alamos Natl Lab, T Fluid Dynam & Struct Mech 3, Los Alamos, NM 87545 USA
[3] Univ Durham, Sch Engn & Comp Sci, Durham DH1 3LE, England
[4] Los Alamos Natl Lab, XCP Methods & Algorithms 4, Los Alamos, NM 87545 USA
关键词
Lagrangian hydrodynamics; Shock physics; Isogeometric analysis; NURBS; Symmetry preservation; Energy conservation; Axisymmetric formulation; rz-cylindrical coordinates; ARTIFICIAL VISCOSITY; FINITE-ELEMENTS;
D O I
10.1016/j.jcp.2014.01.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A recent Isogeometric Analysis (IGA) formulation of Lagrangian shock hydrodynamics [4] is extended to the 3D axisymmetric case. The Euler equations of compressible hydrodynamics are formulated using the rz-cylindrical coordinates, and are discretized in the weak form using NURBS-based IGA. Artificial shock viscosity and internal energy projection are added to stabilize the formulation. The resulting discretization exhibits good accuracy and robustness properties. It also gives exact symmetry preservation on the appropriately constructed meshes. Several benchmark examples are computed to examine the performance of the proposed formulation. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:244 / 261
页数:18
相关论文
共 33 条
[1]   Isogeometric analysis of free-surface flow [J].
Akkerman, I. ;
Bazilevs, Y. ;
Kees, C. E. ;
Farthing, M. W. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (11) :4137-4152
[2]  
[Anonymous], 1996, Iterative Methods for Sparse Linear Systems
[3]  
Barlow A., 2012, Procedia Computer Science, V1, P1893
[4]   YZβ discontinuity capturing for advection-dominated processes with application to arterial drug delivery [J].
Bazilevs, Y. ;
Calo, V. M. ;
Tezduyar, T. E. ;
Hughes, T. J. R. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 54 (6-8) :593-608
[5]   Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Reali, A. ;
Scovazzi, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) :173-201
[6]   Isogeometric analysis:: Approximation, stability and error estimates for h-refined meshes [J].
Bazilevs, Y. ;
Da Veiga, L. Beirao ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (07) :1031-1090
[7]   Isogeometric analysis of Lagrangian hydrodynamics [J].
Bazilevs, Y. ;
Akkerman, I. ;
Benson, D. J. ;
Scovazzi, G. ;
Shashkov, M. J. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 243 :224-243
[8]   Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method [J].
Bazilevs, Y. ;
Akkerman, I. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (09) :3402-3414
[9]  
Belytschko T., 2014, Nonlinear Finite Elements for Continua and Structures, VSecond
[10]   COMPUTATIONAL METHODS IN LAGRANGIAN AND EULERIAN HYDROCODES [J].
BENSON, DJ .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 99 (2-3) :235-394