Dual systems of algebraic iterated function systems

被引:6
作者
Rao, Hui [1 ]
Wen, Zhi-Ying [2 ]
Yang, Ya-Min [3 ]
机构
[1] Huazhong Normal Univ, Dept Math, Wuhan 430072, Peoples R China
[2] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[3] Hua Zhong Agr Univ, Coll Sci, Wuhan 430070, Peoples R China
关键词
Iterated function system; Rauzy fractal; Self-similar tiling; Pisot spectrum conjecture; PERIODIC BETA-EXPANSIONS; ATOMIC SURFACES; PISOT; TILINGS; COINCIDENCE; SUBSTITUTIONS; NUMERATION; BOUNDARY; TILES;
D O I
10.1016/j.aim.2013.11.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a class of graph-directed iterated function systems on R with algebraic parameters, which we call algebraic GIPS. We construct a dual IFS of an algebraic GIFS, and study the relations between the two systems. We determine when a dual system satisfies the open set condition, which is fundamental. For feasible Pisot systems, we construct the left and right Rauzy-Thurston tilings, and study their multiplicities and decompositions. We also investigate their relation with codings space, domain-exchange transformation, and the Pisot spectrum conjecture. The dual IFS provides a unified and simple framework for Rauzy fractals, beta-tilings and related studies, and allows us gain better understanding. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:63 / 85
页数:23
相关论文
共 36 条
[1]   On the boundary of self affine tilings generated by Pisot numbers [J].
Akiyama, S .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2002, 54 (02) :283-308
[2]  
Akiyama S, 1999, DEV MATH, V2, P7
[3]  
Akiyama S., 2007, Math. Pannon, V18, P101
[4]  
Akiyama S., 2000, ALGEBRAIC NUMBER THE, P11
[5]   Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions [J].
Akiyama, Shigeki ;
Barat, Guy ;
Berthe, Valerie ;
Siegel, Anne .
MONATSHEFTE FUR MATHEMATIK, 2008, 155 (3-4) :377-419
[6]  
[Anonymous], 1972, N HOLLAND MATH LIB
[7]  
[Anonymous], 1992, Contemp. Math.
[8]   Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to β-shifts [J].
Baker, Veronica ;
Barge, Marcy ;
Kwapisz, Jaroslaw .
ANNALES DE L INSTITUT FOURIER, 2006, 56 (07) :2213-2248
[9]   Coincidence for substitutions of Pisot type [J].
Barge, M ;
Diamond, B .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2002, 130 (04) :619-626
[10]   Geometric theory of unimodular Pisot substitutions [J].
Barge, Marcy ;
Kwapisz, Jaroslaw .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (05) :1219-1282