共 56 条
Covalent immobilization of molecularly imprinted polymer nanoparticles on a gold surface using carbodiimide coupling for chemical sensing
被引:65
作者:
Kamra, Tripta
[1
,2
]
Chaudhary, Shilpi
[1
,2
]
Xu, Changgang
[2
]
Montelius, Lars
[3
]
Schnadt, Joachim
[1
]
Ye, Lei
[2
]
机构:
[1] Lund Univ, Dept Phys, Div Synchrotron Radiat Res, S-22100 Lund, Sweden
[2] Lund Univ, Div Pure & Appl Biochem, S-22100 Lund, Sweden
[3] Lund Univ, Dept Phys, Div Solid State Phys, S-22100 Lund, Sweden
关键词:
Molecularly imprinted polymer;
Nanoparticle;
Carbodiimide;
Self-assembled monolayer;
X-ray photoelectron spectroscopy;
Surface enhanced Raman spectroscopy;
Propranolol;
SELF-ASSEMBLED MONOLAYERS;
TERMINATED MONOLAYERS;
ADSORPTION;
FILMS;
THIOLS;
SENSOR;
ALKANETHIOLS;
DISULFIDES;
ANTIBODIES;
CHEMISTRY;
D O I:
10.1016/j.jcis.2015.09.009
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
One challenging task in building (bio)chemical sensors is the efficient and stable immobilization of receptor on a suitable transducer. Herein, we report a method for covalent immobilization of molecularly imprinted core-shell nanoparticles for construction of robust chemical sensors. The imprinted nanopartides with a core-shell structure have selective molecular binding sites in the core and multiple amino groups in the shell. The model Au transducer surface is first functionalized with a self-assembled monolayer of 11-mercaptoundecanoic acid. The 11-mercaptoundecanoic acid is activated by treatment with carbodiimide/N-hydroxysuccinimide and then reacted with the core-shell nanoparticles to form amide bonds. We have characterized the process by studying the treated surfaces after each preparation step using atomic force microscopy, scanning electron microscopy, fluorescence microscopy, contact angle measurements and X-ray photoelectron spectroscopy. The microscopy results show the successful immobilization of the imprinted nanoparticles on the surface. The photoelectron spectroscopy results further confirm the success of each functionalization step. Further, the amino groups on the MIP surface were activated by electrostatically adsorbing negatively charged Au colloids. The functionalized surface was shown to be active for surface enhanced Raman scattering detection of propranolol. The particle immobilization and surface enhanced Raman scattering approach described here has a general applicability for constructing chemical sensors in different formats. (C) 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
引用
收藏
页码:1 / 8
页数:8
相关论文