Large discharge capacities at high current rates for carbon-coated LiMnPO4 nanocrystalline cathodes

被引:64
作者
Dinh, Hung-Cuong [1 ]
Mho, Sun-il [1 ]
Kang, Yongku [2 ]
Yeo, In-Hyeong [3 ]
机构
[1] Ajou Univ, Div Energy Syst Res, Suwon 443749, South Korea
[2] Korea Res Inst Chem Technol, Div Adv Mat, Taejon 305600, South Korea
[3] Dongguk Univ, Dept Chem, Seoul 100715, South Korea
基金
新加坡国家研究基金会;
关键词
Nanocrystalline olivine cathode; Conductive coating; Hydrothermal method; Impedance analysis; Lithium ion battery; LITHIUM-ION BATTERIES; HIGH-PERFORMANCE; ELECTROCHEMICAL PROPERTIES; PARTICLE-SIZE; LIMPO4 M=MN; FE; LIFEPO4; MORPHOLOGY; MN; CO;
D O I
10.1016/j.jpowsour.2013.01.191
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanocrystalline LiMnPO4 particles approximately 100 nm in size are synthesized for use as a cathode material using a hydrothermal method. Small charge transfer resistances (R-ct) measured using electrochemical impedance spectroscopy (EIS) indicate that the particles are effectively coated with the conductive C layer by pyrolyzing sucrose in an inert atmosphere. The cathode composed of nanocrystalline C-coated LiMnPO4 exhibits the largest specific capacities of 171 mAhg(-1) and 153 mAhg(-1) for the first cycle and 166 mAhg(-1) and 146 mAhg(-1) after 110 battery cycles at a rate of 0.05 C at 55 degrees C and 25 degrees C, respectively, with a degradation rate of 4 +/- 1% after 110 battery cycles. The specific capacities are 165 mAhg(-1) and 142 mAhg(-1) for the first cycle at 55 degrees C for the nanoparticles with high crystallinity, even at high discharging current of 0.5 C and 5C, respectively. Diffusion coefficients of Li+ in LiMnPO4 (the fully discharged state) and in MnPO4 (the fully charged state) are estimated to be 3.58 x 10(-16) and 4.99 x 10(-17) cm(2)s(-1), respectively, from EIS in the low frequency region. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:189 / 195
页数:7
相关论文
共 32 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Physical and electrochemical properties of LiMnPO4/C composite cathode prepared with different conductive carbons [J].
Bakenov, Zhumabay ;
Taniguchi, Izumi .
JOURNAL OF POWER SOURCES, 2010, 195 (21) :7445-7451
[3]  
Carvajal J. R., 2008, FULLPROF 2000 RIETVE
[4]   LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-Ion Battery Cathode [J].
Choi, Daiwon ;
Wang, Donghai ;
Bae, In-Tae ;
Xiao, Jie ;
Nie, Zimin ;
Wang, Wei ;
Viswanathan, Vilayanur V. ;
Lee, Yun Jung ;
Zhang, Ji-Guang ;
Graff, Gordon L. ;
Yang, Zhenguo ;
Liu, Jun .
NANO LETTERS, 2010, 10 (08) :2799-2805
[5]   Size effects on carbon-free LiFePO4 powders [J].
Delacourt, C. ;
Poizot, P. ;
Levasseur, S. ;
Masquelier, C. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (07) :A352-A355
[6]   One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders [J].
Delacourt, C ;
Poizot, P ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
CHEMISTRY OF MATERIALS, 2004, 16 (01) :93-99
[7]   Hydrothermal and Solvothermal Process Towards Development of LiMPO4 (M = Fe, Mn) Nanomaterials for Lithium-Ion Batteries [J].
Devaraju, Murukanahally Kempaiah ;
Honma, Itaru .
ADVANCED ENERGY MATERIALS, 2012, 2 (03) :284-297
[8]   Electrochemical Analysis of Conductive Polymer-Coated LiFePO4 Nanocrystalline Cathodes with Controlled Morphology [J].
Dinh, Hung-Cuong ;
Mho, Sun-Il ;
Yeo, In-Hyeong .
ELECTROANALYSIS, 2011, 23 (09) :2079-2086
[9]   Cathode performance of LiMnPO4/C nanocomposites prepared by a combination of spray pyrolysis and wet ball-milling followed by heat treatment [J].
Doan, The Nam Long ;
Taniguchi, Izumi .
JOURNAL OF POWER SOURCES, 2011, 196 (03) :1399-1408
[10]   Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4 [J].
Ellis, B. ;
Kan, Wang Hay ;
Makahnouk, W. R. M. ;
Nazar, L. F. .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (30) :3248-3254