COMPLETE INTERSECTIONS AND EQUIVALENCES WITH CATEGORIES OF MATRIX FACTORIZATIONS

被引:7
作者
Bergh, Petter Andreas [1 ]
Jorgensen, David A. [2 ]
机构
[1] NTNU, Inst Matemat Fag, N-7491 Trondheim, Norway
[2] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
关键词
matrix factorization; complete intersection; MODULES;
D O I
10.4310/HHA.2016.v18.n2.a21
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that one can realize certain triangulated subcategories of the singularity category of a complete intersection as homotopy categories of matrix factorizations. Moreover, we prove that for any commutative ring and non-zerodivisor, the homotopy category of matrix factorizations embeds into the homotopy category of totally acyclic complexes of finitely generated projective modules over the factor ring.
引用
收藏
页码:377 / 390
页数:14
相关论文
共 11 条
[1]  
[Anonymous], MAXIMAL COHEN UNPUB
[2]  
[Anonymous], 1988, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras. London Mathematical Society Lecture Notes Series
[3]   Support varieties and cohomology over complete intersections [J].
Avramov, LL ;
Buchweitz, RO .
INVENTIONES MATHEMATICAE, 2000, 142 (02) :285-318
[4]   MODULES OF FINITE VIRTUAL PROJECTIVE DIMENSION [J].
AVRAMOV, LL .
INVENTIONES MATHEMATICAE, 1989, 96 (01) :71-101
[5]  
Bergh P. A., PREPRINT
[6]   MATRIX FACTORIZATIONS IN HIGHER CODIMENSION [J].
Burke, Jesse ;
Walker, Mark E. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (05) :3323-3370
[8]  
Holm T., 2010, LONDON MATH SOC LECT, V375, P1
[9]   Independence of the total reflexivity conditions for modules [J].
Jorgensen, David A. ;
Sega, Liana M. .
ALGEBRAS AND REPRESENTATION THEORY, 2006, 9 (02) :217-226
[10]  
Orlov D. O., 2004, Trudy Steklov Math. Institute, V3, P227