Efficient liver segmentation in CT images based on graph cuts and bottleneck detection

被引:38
作者
Liao, Miao [1 ,2 ]
Zhao, Yu-qian [2 ]
Wang, Wei [3 ]
Zeng, Ye-zhan [2 ]
Yang, Qing [2 ]
Shih, Frank Y. [4 ]
Zou, Bei-ji [2 ]
机构
[1] Hunan Univ Sci & Technol, Sch Comp Sci & Engn, Xiangtan 411201, Peoples R China
[2] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[3] Cent S Univ, Xiangya Hosp 3, Changsha 410083, Hunan, Peoples R China
[4] New Jersey Inst Technol, Coll Comp Sci, Newark, NJ 07102 USA
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2016年 / 32卷 / 11期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Liver segmentation; Graph cuts; Bottleneck detection; Gaussian fitting; PCA; STATISTICAL SHAPE MODEL; 3D SEGMENTATION; ALGORITHM;
D O I
10.1016/j.ejmp.2016.10.002
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Liver segmentation from abdominal computed tomography (CT) volumes is extremely important for computer-aided liver disease diagnosis and surgical planning of liver transplantation. Due to ambiguous edges, tissue adhesion, and variation in liver intensity and shape across patients, accurate liver segmentation is a challenging task. In this paper, we present an efficient semi-automatic method using intensity, local context, and spatial correlation of adjacent slices for the segmentation of healthy liver regions in CT volumes. An intensity model is combined with a principal component analysis (PCA) based appearance model to exclude complex background and highlight liver region. They are then integrated with location information from neighboring slices into graph cuts to segment the liver in each slice automatically. Finally, a boundary refinement method based on bottleneck detection is used to increase the segmentation accuracy. Our method does not require heavy training process or statistical model construction, and is capable of dealing with complicated shape and intensity variations. We apply the proposed method on XHCSU14 and SLIVER07 databases, and evaluate it by MICCAI criteria and Dice similarity coefficient. Experimental results show our method outperforms several existing methods on liver segmentation. (C) 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1383 / 1396
页数:14
相关论文
共 28 条
  • [1] Principal component analysis
    Abdi, Herve
    Williams, Lynne J.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04): : 433 - 459
  • [2] Afifi A, 2012, LECT NOTES COMPUT SC, V7511, P395, DOI 10.1007/978-3-642-33418-4_49
  • [3] Liver segmentation in contrast enhanced CT data using graph cuts and interactive 3D segmentation refinement methods
    Beichel, Reinhard
    Bornik, Alexander
    Bauer, Christian
    Sorantin, Erich
    [J]. MEDICAL PHYSICS, 2012, 39 (03) : 1361 - 1373
  • [4] An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
    Boykov, Y
    Kolmogorov, V
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (09) : 1124 - 1137
  • [5] Boykov YY, 2001, EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL I, PROCEEDINGS, P105, DOI 10.1109/ICCV.2001.937505
  • [6] Medical Image Segmentation by Combining Graph Cuts and Oriented Active Appearance Models
    Chen, Xinjian
    Udupa, Jayaram K.
    Bagci, Ulas
    Ying Zhuge
    Yao, Jianhua
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (04) : 2035 - 2046
  • [7] Liver segmentation by intensity analysis and anatomical information in multi-slice CT images
    Foruzan, Amir H.
    Zoroofi, Reza Aghaeizadeh
    Hori, Masatoshi
    Sato, Yoshinobu
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2009, 4 (03) : 287 - 297
  • [8] A fully automatic three-step liver segmentation method on LDA-based probability maps for multiple contrast MR images
    Gloger, Oliver
    Kuehn, Jens
    Stanski, Adam
    Voelzke, Henry
    Puls, Ralf
    [J]. MAGNETIC RESONANCE IMAGING, 2010, 28 (06) : 882 - 897
  • [9] Heimann T., 2007, SEGMENTATION LIVER 2
  • [10] Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets
    Heimann, Tobias
    van Ginneken, Bram
    Styner, Martin A.
    Arzhaeva, Yulia
    Aurich, Volker
    Bauer, Christian
    Beck, Andreas
    Becker, Christoph
    Beichel, Reinhard
    Bekes, Gyoergy
    Bello, Fernando
    Binnig, Gerd
    Bischof, Horst
    Bornik, Alexander
    Cashman, Peter M. M.
    Chi, Ying
    Cordova, Andres
    Dawant, Benoit M.
    Fidrich, Marta
    Furst, Jacob D.
    Furukawa, Daisuke
    Grenacher, Lars
    Hornegger, Joachim
    Kainmueller, Dagmar
    Kitney, Richard I.
    Kobatake, Hidefumi
    Lamecker, Hans
    Lange, Thomas
    Lee, Jeongjin
    Lennon, Brian
    Li, Rui
    Li, Senhu
    Meinzer, Hans-Peter
    Nemeth, Gabor
    Raicu, Daniela S.
    Rau, Anne-Mareike
    van Rikxoort, Eva M.
    Rousson, Mikael
    Rusko, Laszlo
    Saddi, Kinda A.
    Schmidt, Guenter
    Seghers, Dieter
    Shimizu, Akinobu
    Slagmolen, Pieter
    Sorantin, Erich
    Soza, Grzegorz
    Susomboon, Ruchaneewan
    Waite, Jonathan M.
    Wimmer, Andreas
    Wolf, Ivo
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) : 1251 - 1265