Robust estimation for ordinal regression

被引:12
|
作者
Croux, C. [1 ]
Haesbroeck, G. [2 ]
Ruwet, C. [2 ]
机构
[1] Katholieke Univ Leuven, Fac Business & Econ, Louvain, Belgium
[2] Univ Liege, Dept Math, Liege, Belgium
关键词
Breakdown point; Diagnostic plot; Influence function; Ordinal regression; Weighted maximum likelihood; Robust distances; GENERALIZED LINEAR-MODELS; LATENT VARIABLE MODELS; LOGISTIC-REGRESSION; BINARY REGRESSION; BOUNDED-INFLUENCE; BREAKDOWN;
D O I
10.1016/j.jspi.2013.04.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ordinal regression is used for modelling an ordinal response variable as a function of some explanatory variables. The classical technique for estimating the unknown parameters of this model is Maximum Likelihood (ML). The lack of robustness of this estimator is formally shown by deriving its breakdown point and its influence function. To robustify the procedure, a weighting step is added to the Maximum Likelihood estimator, yielding an estimator with bounded influence function. We also show that the loss in efficiency due to the weighting step remains limited. A diagnostic plot based on the Weighted Maximum Likelihood estimator allows to detect outliers of different types in a single plot. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1486 / 1499
页数:14
相关论文
共 50 条
  • [41] The Use of Logistic and Ordinal Regression for the Prediction of the Phadiatop Test Results
    Kuranova, Pavlina
    Hajdukova, Zdenka
    2013 INTERNATIONAL CONFERENCE ON DIGITAL TECHNOLOGIES (DT), 2013, : 111 - 115
  • [42] Ordinal Regression for Beef Grade Classification
    Lee, Chaehyeon
    Hong, Jiuk
    Lee, Jonghyuck
    Choi, Taehoon
    Jung, Heechul
    2023 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, ICCE, 2023,
  • [43] Kernel Discriminant Learning for Ordinal Regression
    Sun, Bing-Yu
    Li, Jiuyong
    Wu, Desheng Dash
    Zhang, Xiao-Ming
    Li, Wen-Bo
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2010, 22 (06) : 906 - 910
  • [44] Facial expression intensity estimation using label-distribution-learning-enhanced ordinal regression
    Xu, Ruyi
    Wang, Zhun
    Chen, Jingying
    Zhou, Longpu
    MULTIMEDIA SYSTEMS, 2024, 30 (01)
  • [45] Meta Ordinal Regression Forest for Medical Image Classification With Ordinal Labels
    Lei, Yiming
    Zhu, Haiping
    Zhang, Junping
    Shan, Hongming
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (07) : 1233 - 1247
  • [46] Dimensionality Reduction in Multiple Ordinal Regression
    Zeng, Jiabei
    Liu, Yang
    Leng, Biao
    Xiong, Zhang
    Cheung, Yiu-ming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (09) : 4088 - 4101
  • [47] A Natural Threshold Model for Ordinal Regression
    Xingyu Wang
    Yanzhi Song
    Zhouwang Yang
    Neural Processing Letters, 2023, 55 : 4933 - 4949
  • [48] Nonparallel Support Vector Ordinal Regression
    Wang, Huadong
    Shi, Yong
    Niu, Lingfeng
    Tian, Yingjie
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (10) : 3306 - 3317
  • [49] Incremental sparse Bayesian ordinal regression
    Li, Chang
    de Rijke, Maarten
    NEURAL NETWORKS, 2018, 106 : 294 - 302
  • [50] Facial expression intensity estimation using label-distribution-learning-enhanced ordinal regression
    Ruyi Xu
    Zhun Wang
    Jingying Chen
    Longpu Zhou
    Multimedia Systems, 2024, 30