Asymptotic Properties of Bayes Risk for the Horseshoe Prior

被引:60
作者
Datta, Jyotishka [1 ]
Ghosh, Jayanta K. [1 ]
机构
[1] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
来源
BAYESIAN ANALYSIS | 2013年 / 8卷 / 01期
关键词
Multiple Testing; Horseshoe Decision Rule; Asymptotic Optimality; Bayes Oracle; FALSE DISCOVERY RATE; EMPIRICAL-BAYES; SHRINKAGE; SELECTION; SPARSITY;
D O I
10.1214/13-BA805
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish some optimality properties of the multiple testing rule induced by the horseshoe estimator due to Carvalho, Polson, and Scott (2010, 2009) from a Bayesian decision theoretic viewpoint. We consider the two-groups model for the data and an additive loss structure such that the total loss is equal to the number of misclassified hypotheses. We use the same asymptotic framework as Bogdan, Chakrabarti, Frommlet, and Ghosh (2011) who introduced the Bayes oracle in the context of multiple testing and provided conditions under which the Benjamini-Hochberg and Bonferroni procedures attain the risk of the Bayes oracle. We prove a similar result for the horseshoe decision rule up to O(1) with the constant in the horseshoe risk close to the constant in the oracle. We use the Full Bayes estimate of the tuning parameter tau. It is worth noting that the Full Bayes estimate cannot be replaced by the Empirical Bayes estimate, which tends to be too small.
引用
收藏
页码:111 / 131
页数:21
相关论文
共 27 条
[1]   Adapting to unknown sparsity by controlling the false discovery rate [J].
Abramovich, Felix ;
Benjamini, Yoav ;
Donoho, David L. ;
Johnstone, Iain M. .
ANNALS OF STATISTICS, 2006, 34 (02) :584-653
[2]  
Armagan A., 2011, ARXIV11044135, P129
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]  
Bogdan M., 2008, IMS COLLECTIONS, V1, P211, DOI DOI 10.1214/193940307000000158
[5]   ASYMPTOTIC BAYES-OPTIMALITY UNDER SPARSITY OF SOME MULTIPLE TESTING PROCEDURES [J].
Bogdan, Malgorzata ;
Chakrabarti, Arijit ;
Frommlet, Florian ;
Ghosh, Jayanta K. .
ANNALS OF STATISTICS, 2011, 39 (03) :1551-1579
[6]  
Carvalho C.M., 2009, Journal of Machine Learning Research WCP, V5
[7]   The horseshoe estimator for sparse signals [J].
Carvalho, Carlos M. ;
Polson, Nicholas G. ;
Scott, James G. .
BIOMETRIKA, 2010, 97 (02) :465-480
[8]   HORSESHOES IN MULTIDIMENSIONAL SCALING AND LOCAL KERNEL METHODS [J].
Diaconis, Persi ;
Goel, Sharad ;
Holmes, Susan .
ANNALS OF APPLIED STATISTICS, 2008, 2 (03) :777-807
[9]   Large-scale simultaneous hypothesis testing: The choice of a null hypothesis [J].
Efron, B .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (465) :96-104
[10]   Microarrays, empirical Bayes and the two-groups model [J].
Efron, Bradley .
STATISTICAL SCIENCE, 2008, 23 (01) :1-22