Best polynomial approximation on the triangle

被引:1
作者
Feng, Han [1 ]
Krattenthaler, Christian [2 ]
Xu, Yuan [3 ]
机构
[1] City Univ Hong Kong Kowloon, Dept Math, Hong Kong, Peoples R China
[2] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[3] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
Best polynomial approximation; Orthogonal expansion; Triangle; K-functional;
D O I
10.1016/j.jat.2019.01.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E-n(f)(alpha,beta,gamma) denote the error of best approximation by polynomials of degree at most n in the space L-2 ((omega) over bar (alpha,beta,gamma)) on the triangle {(x, y) : x, y >= 0, x + y <= 1}, where (omega) over bar (alpha,beta,gamma) (x, y) := x(alpha) y(beta) (1 - x - y)(gamma )for alpha, beta, gamma > -1. Our main result gives a sharp estimate of E-n (f)(alpha,beta,gamma) in terms of the error of best approximation for higher order derivatives of f in appropriate Sobolev spaces. The result also leads to a characterization of E-n (f)(alpha,beta,gamma) by a weighted K-functional. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:63 / 78
页数:16
相关论文
共 15 条
[1]  
[Anonymous], CONT MATH
[2]  
[Anonymous], 1987, Moduli of Smoothness
[3]   K-MODULI, MODULI OF SMOOTHNESS, AND BERNSTEIN POLYNOMIALS ON A SIMPLEX [J].
BERENS, H ;
XU, Y .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1991, 2 (04) :411-421
[4]  
Coskun H, 2006, CONTEMP MATH, V417, P127
[5]   Approximation by the Bernstein-Durrmeyer Operator on a Simplex [J].
Dai, Feng ;
Huang, Hongwei ;
Wang, Kunyang .
CONSTRUCTIVE APPROXIMATION, 2010, 31 (03) :289-308
[6]  
DeVore R. A., 1993, Constructive Approximation
[7]  
Krattenthaler Christian, 1999, Seminaire Lotharingien Combinatoire, V42, pB42q
[8]   Bcn-symmetric Abelian functions [J].
Rains, Eric M. .
DUKE MATHEMATICAL JOURNAL, 2006, 135 (01) :99-180
[9]   Elliptic enumeration of nonintersecting lattice paths [J].
Schlosser, Michael .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (03) :505-521
[10]  
Szego G., 1975, C PUBLICATIONS, Vfourth