Boundary generating curves of the c-numerical range

被引:24
作者
Chien, MT [1 ]
Nakazato, H
机构
[1] Soochow Univ, Dept Math, Taipei 11102, Taiwan
[2] Hirosaki Univ, Fac Sci & Technol, Dept Math Syst Sci, Hirosaki, Aomori 0368561, Japan
关键词
c-Numerical range; boundary generating curve; generalized circulant matrix; rational curve; genus;
D O I
10.1016/S0024-3795(99)00055-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an n x n matrix and c = (c(1), c(2), ..., c(n)) be a real n-tuple. The c-numerical range of A is the set W-c(A) = {Sigma(j=1)(n), c(j)x(j)*Ax(j) : {x(1), x(2), ..., x(n)} is an orthonormal basis of C-n}. We obtain parametric representations of the boundary generating curve of the c-numerical range of a matrix. Applying this result, we generalize the result of Anderson to the c-numerical range. Furthermore, we give a description of the boundary generating curve of the c-numerical range of certain types of nilpotent Toeplitz matrices, A sufficient condition for the boundary generating curve to be rational is obtained. Finally we explicitly compute the boundary generating curves of the numerical ranges for several concrete matrices and classify the rationality of the curves. (C) 1999 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:67 / 84
页数:18
相关论文
共 19 条
[1]  
[Anonymous], LINEAR MULTILINEAR A
[2]   LACUNAS FOR HYPERBOLIC DIFFERENTIAL OPERATORS WITH CONSTANT COEFFICIENTS .1. [J].
ATIYAH, MF ;
BOTT, R ;
GARDING, L .
ACTA MATHEMATICA UPPSALA, 1970, 124 (1-2) :109-&
[3]   CIRCULANT PRECONDITIONERS FOR COMPLEX TOEPLITZ MATRICES [J].
CHAN, RH ;
YEUNG, MC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) :1193-1207
[4]  
CHAN RH, 1996, SIAM J SCI COMPUT, V17, P767
[5]   On the numerical range of tridiagonal operators [J].
Chien, MT .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 246 :203-214
[6]   CIRCULARITY OF THE NUMERICAL RANGE [J].
CHIEN, MT ;
TAM, BS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 201 :113-133
[7]  
CHIEN MT, ELLIPTIC CURVES ASS
[8]  
CHIEN MT, 1998, LINEAR MULTILINEAR A, V43, P363
[9]  
CHIEN MT, 1994, SOOCHOW J MATH, V20, P555
[10]   Normal Toeplitz matrices [J].
Farenick, DR ;
Krupnik, M ;
Krupnik, N ;
Lee, WY .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (04) :1037-1043