NONLINEAR STABILITY OF STATIONARY SOLUTIONS FOR SURFACE DIFFUSION WITH BOUNDARY CONDITIONS

被引:9
作者
Garcke, Harald [1 ]
Ito, Kazuo [2 ]
Kohsaka, Yoshihito [3 ]
机构
[1] Univ Regensburg, NWFI Math, D-93040 Regensburg, Germany
[2] Adv Algorithm & Syst, Tokyo 1500013, Japan
[3] Muroran Inst Technol, Muroran, Hokkaido 0508585, Japan
关键词
surface diffusion; nonlinear stability; energy method; variational calculus;
D O I
10.1137/070694752
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The volume-preserving fourth order surface diffusion flow has constant mean curvature hypersurfaces as stationary solutions. We show nonlinear stability of certain stationary curves in the plane which meet an exterior boundary with a prescribed contact angle. Methods include semigroup theory, energy arguments, geometric analysis, and variational calculus.
引用
收藏
页码:491 / 515
页数:25
相关论文
共 24 条
[1]   HOLDER CLASSES WITH BOUNDARY-CONDITIONS AS INTERPOLATION SPACES [J].
ACQUISTAPACE, P ;
TERRENI, B .
MATHEMATISCHE ZEITSCHRIFT, 1987, 195 (04) :451-471
[2]  
[Anonymous], INTERFACES FREE BOUN
[3]  
[Anonymous], ADV MATH SCI APPL
[4]   On the variational approximation of combined second and fourth order geometric evolution equations [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (03) :1006-1041
[5]   A parametric finite element method for fourth order geometric evolution equations [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 222 (01) :441-467
[6]   ON 3-PHASE BOUNDARY MOTION AND THE SINGULAR LIMIT OF A VECTOR-VALUED GINZBURG-LANDAU EQUATION [J].
BRONSARD, L ;
REITICH, F .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 124 (04) :355-379
[7]  
Cahn J. M., 1996, Euro. J. Appl. Math., V7, P287, DOI DOI 10.1017/S0956792500002369
[8]   THE HELE-SHAW PROBLEM AND AREA-PRESERVING CURVE-SHORTENING MOTIONS [J].
CHEN, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (02) :117-151
[9]   ON THE MOTION OF A PHASE INTERFACE BY SURFACE-DIFFUSION [J].
DAVI, F ;
GURTIN, ME .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1990, 41 (06) :782-811
[10]  
Ei Shin-Ichiro, 1993, J FS U TOKYO IA, V40, P651