Nonlinear Gain l2 Stability of Nonlinear Feedback Systems with Quantized Measurements

被引:0
|
作者
Kameneva, Tatiana [1 ]
Nesic, Dragan [1 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Parkville, Vic 3010, Australia
关键词
Robustness; Disturbances; l(2) Stability; Quantization;
D O I
10.1109/CCDC.2008.4597272
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we address the stabilization problem of the nonlinear feedback systems with quantized measurements in the presence of bounded disturbances. Building on an approach applied in [Liberzon, Nesic, 2004] to the linear time-invariant systems with quantized feedback, we extend the results of [Kameneva, Nesic, 2008] to the quantized control systems with nonlinear dynamics. Using the time-sampled scheme proposed in [Liberzon, Nesic, 2004] and later used in [Kameneva, Nesic, 2008], we show that the nonlinear gain 12 stability is achievable for the nonlinear systems with quantized feedback.
引用
收藏
页码:68 / 73
页数:6
相关论文
共 50 条
  • [1] Nonlinear L2 Gain Analysis for Linear Uncertain Saturation Systems with Feedback Perturbation
    Song Yinghui
    Liu Sheng
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 4094 - 4099
  • [2] Delay-independent stability for interconnected nonlinear systems with finite L2 gain
    Chopra, Nikhil
    Spong, Mark W.
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 4066 - +
  • [3] L2 gain approximation of nonlinear systems:: A heuristic approach
    Siahaan, Hardy B.
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 3696 - 3701
  • [4] L2 gain disturbance attenuation for nonlinear singularly perturbed systems
    School of Elactrical Engineering and Automatic, Tianjin Polytechnic University, TianJin, China
    Proc. - Int. Conf. Intelligent Syst. Des. Eng. Appl., ISDEA, (907-910):
  • [5] L2 gain disturbance attenuation for a class of MIMO nonlinear systems
    Lan, Hai
    Li, Dian-Pu
    Yuan, Xin
    Yang, Li-Hua
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2004, 25 (06): : 751 - 755
  • [6] Model reduction of nonlinear systems with bounded incremental L2 gain
    Besselink, Bart
    van de Wouw, Nathan
    Nijmeijer, Henk
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 7170 - 7175
  • [7] Quantized l2 - l∞ Control for Nonlinear Discrete-Time Systems With DoS Attacks
    Tian, Ying
    Qiao, Ming-Yang
    IEEE ACCESS, 2025, 13 : 21946 - 21955
  • [8] Nonlinear systems with nonlinear L2-gain
    Dower, Peter M.
    Kellett, Christopher M.
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 777 - 782
  • [9] Optimal nonlinear-nonquadratic feedback control for systems with L2 and L∞ disturbances
    Haddad, Wassim M.
    Chellaboina, Vijaya-Sekhar
    Nonlinear Analysis, Theory, Methods and Applications, 1998, 34 (02): : 229 - 255
  • [10] Optimal nonlinear-nonquadratic feedback control for systems with L2 and L∞ disturbances
    Haddad, WM
    Chellaboina, VS
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (02) : 229 - 255