Imaging of particle shear migration with electrical impedance tomography

被引:30
|
作者
Butler, JE [1 ]
Bonnecaze, RT [1 ]
机构
[1] Univ Texas, Dept Chem Engn, Austin, TX 78712 USA
关键词
D O I
10.1063/1.870062
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Electrical impedance tomography (EIT) is used to investigate the net migration of particles in a suspension undergoing pressure-driven flow through a tube at low Reynolds number. A low frequency electrical current is applied to the flowing suspension by two flush-mounted electrodes on the pipe wall to create a potential field which is sampled by other pairs of flush-mounted electrodes. A numerical inversion of the data, which takes into account the geometry and symmetry of the problem, gives the conductivity variation within the flow. An image of the suspension particle volume fraction in the tube is then formed using a relationship between the local conductivity and local suspension concentration. Consistent with particle shear migration of a concentrated suspension at low Reynolds number, the images from experimental data show a net migration of particles toward the centerline of the tube. The images of a 0.25 volume fraction suspension at the lowest Reynolds number examined compare favorably to an existing continuum theory of particle shear migration. Other images from experiments at higher, but still small Reynolds numbers, and at volume fractions of 0.25 and 0.40 are also presented. The particle migration measured with the relatively inexpensive EIT at the latter condition is in very good agreement with the particle distribution measured with magnetic resonance imaging by Hampton et al. [J. Rheol. 41, 621 (1997)]. (C) 1999 American Institute of Physics. [S1070-6631(99)03208-0].
引用
收藏
页码:1982 / 1994
页数:13
相关论文
共 50 条
  • [1] IMAGING THE COMPLEX IMPEDANCE IN ELECTRICAL-IMPEDANCE TOMOGRAPHY
    JOSSINET, J
    TRILLAUD, C
    CLINICAL PHYSICS AND PHYSIOLOGICAL MEASUREMENT, 1992, 13 : 47 - 50
  • [2] Differential imaging in electrical impedance computerized tomography
    Shie, JR
    Li, CJ
    Lin, JT
    MATERIALS EVALUATION, 2001, 59 (03) : 406 - 412
  • [3] Electrical impedance tomography for imaging tissue electroporation
    Davalos, RV
    Otten, DM
    Mir, LM
    Rubinsky, B
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (05) : 761 - 767
  • [4] Electrical impedance tomography imaging of the cardiopulmonary system
    Frerichs, Inez
    Becher, Tobias
    Weiler, Norbert
    CURRENT OPINION IN CRITICAL CARE, 2014, 20 (03) : 323 - 332
  • [5] Imaging the complex conductivity in electrical impedance tomography
    Shallof, AM
    Barber, DC
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL III, 1996, : 543 - 546
  • [6] Imaging fast electrical activity in the brain with electrical impedance tomography
    Aristovich, Kirill Y.
    Packham, Brett C.
    Koo, Hwan
    dos Santos, Gustavo Sato
    McEvoy, Andy
    Holder, David S.
    NEUROIMAGE, 2016, 124 : 204 - 213
  • [7] Study on human brain impedance imaging using electrical impedance tomography
    Xu, GZ
    Dong, GY
    Yan, WL
    Yang, QX
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON ELECTROMAGNETIC FIELD PROBLEMS AND APPLICATIONS, 2000, : 378 - 380
  • [8] Electrical impedance tomography for high speed chest imaging
    Lionheart, WRB
    Lidgey, FJ
    McLeod, CN
    Paulson, KS
    Pidcock, MK
    Shi, Y
    PHYSICA MEDICA, 1997, 13 : 247 - 249
  • [9] A review on electrical impedance tomography for pulmonary perfusion imaging
    Nguyen, D. T.
    Jin, C.
    Thiagalingam, A.
    McEwan, A. L.
    PHYSIOLOGICAL MEASUREMENT, 2012, 33 (05) : 695 - 706
  • [10] Single Cell Imaging Using Electrical Impedance Tomography
    Sun, Tao
    Tsuda, Soichiro
    Zauner, Klaus-Peter
    Morgan, Hywel
    2009 4TH IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, VOLS 1 AND 2, 2009, : 858 - 863