Structure-based functional annotation of hypothetical proteins from Candida dubliniensis: a quest for potential drug targets

被引:18
作者
Kumar, Kundan [1 ]
Prakash, Amresh [1 ]
Anjum, Farah [2 ]
Islam, Asimul [1 ]
Ahmad, Faizan [1 ]
Hassan, Md. Imtaiyaz [1 ]
机构
[1] Jamia Millia Islamia, Ctr Interdisciplinary Res Basic Sci, New Delhi 110025, India
[2] Taif Univ, Female Coll Appl Med Sci, Al Taif, Saudi Arabia
关键词
Candida dubliniensis; Hypothetical protein; Sequence analysis; Homology modeling; Functional annotation; Domains and motifs; Functional genomics; CRYSTAL-STRUCTURE; STRUCTURE PREDICTION; SWISS-MODEL; DESIGN; LIGAND; SERVER; CLASSIFICATION; IDENTIFICATION; FILAMENTATION; RECOGNITION;
D O I
10.1007/s13205-014-0256-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Candida dubliniensis is an emerging pathogenic yeast in humans and infections are usually restricted to mucosal parts of the body. However, its presence in specimens of immunocompromised individuals, especially in HIV-positive patients, is of major medical concern. There is a large fraction of genomes of C. dubliniensis in the database which are uncharacterized for their biochemical, biophysical, and/or cellular functions, and are identified as hypothetical proteins (HPs). Function annotation of Candida genome is, therefore, essentially required to facilitate the understanding of mechanisms of pathogenesis and biochemical pathways important for selecting novel therapeutic target. Here, we carried out an extensive analysis to explain the functional properties of genome, using available protein structure and function analysis tools. We successfully modeled the structures of eight HPs for which a template with moderate sequence similarity was available in the protein data bank. All modeled structures were analyzed and we found that these proteins may act as transporter, kinase, transferase, ketosteroid, isomerase, hydrolase, oxidoreductase, and binding targets for DNA and RNA. Since these unique HPs of Candida showed no homologs in humans, these proteins are expected to be a potential target for future antifungal therapy.
引用
收藏
页码:561 / 576
页数:16
相关论文
共 87 条
  • [1] Candida Infections of the Genitourinary Tract
    Achkar, Jacqueline M.
    Fries, Bettina C.
    [J]. CLINICAL MICROBIOLOGY REVIEWS, 2010, 23 (02) : 253 - 273
  • [2] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [3] BASIC LOCAL ALIGNMENT SEARCH TOOL
    ALTSCHUL, SF
    GISH, W
    MILLER, W
    MYERS, EW
    LIPMAN, DJ
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) : 403 - 410
  • [4] [Anonymous], J CARCINOG MUTAGEN S
  • [5] [Anonymous], NUCLEIC ACIDS RES
  • [6] [Anonymous], LETT DRUG DES DISCOV
  • [7] [Anonymous], 2006, CURRENT PROTOCOLS BI
  • [8] [Anonymous], PLOS ONE
  • [9] The InterPro database, an integrated documentation resource for protein families, domains and functional sites
    Apweiler, R
    Attwood, TK
    Bairoch, A
    Bateman, A
    Birney, E
    Biswas, M
    Bucher, P
    Cerutti, T
    Corpet, F
    Croning, MDR
    Durbin, R
    Falquet, L
    Fleischmann, W
    Gouzy, J
    Hermjakob, H
    Hulo, N
    Jonassen, I
    Kahn, D
    Kanapin, A
    Karavidopoulou, Y
    Lopez, R
    Marx, B
    Mulder, NJ
    Oinn, TM
    Pagni, M
    Servant, F
    Sigrist, CJA
    Zdobnov, EM
    [J]. NUCLEIC ACIDS RESEARCH, 2001, 29 (01) : 37 - 40
  • [10] SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information
    Biasini, Marco
    Bienert, Stefan
    Waterhouse, Andrew
    Arnold, Konstantin
    Studer, Gabriel
    Schmidt, Tobias
    Kiefer, Florian
    Cassarino, Tiziano Gallo
    Bertoni, Martino
    Bordoli, Lorenza
    Schwede, Torsten
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (W1) : W252 - W258