Fluctuating viability selection on morphology of cliff swallows is driven by climate

被引:13
作者
Brown, C. R. [1 ]
Brown, M. B. [2 ]
Roche, E. A. [1 ]
机构
[1] Univ Tulsa, Dept Biol Sci, Tulsa, OK 74104 USA
[2] Univ Nebraska, Sch Nat Resources, Lincoln, NE USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
cliff swallow; climate; directional selection; fluctuating selection; morphology; Petrochelidon pyrrhonota; stabilizing selection; INTENSE NATURAL-SELECTION; MARTINS RIPARIA-RIPARIA; PETROCHELIDON-PYRRHONOTA; STABILIZING SELECTION; DIRECTIONAL SELECTION; PHENOTYPIC SELECTION; AFRICAN RAINFALL; DARWINS FINCHES; MARKED ANIMALS; SURVIVAL RATES;
D O I
10.1111/jeb.12130
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The extent to which fluctuating selection can maintain evolutionary stasis in most populations remains an unresolved question in evolutionary biology. Climate has been hypothesized to drive reversals in the direction of selection among different time periods and may also be responsible for intense episodic selection caused by rare weather events. We measured viability selection associated with morphological traits in cliff swallows (Petrochelidon pyrrhonota) in western Nebraska, USA, over a 14-year period following a rare climatic event. We used mark-recapture to estimate the annual apparent survival of over 26000 individuals whose wing, tail, tarsus and bill had been measured. The fitness functions associated with tarsus length and bill dimensions fluctuated depending on annual climate conditions on the birds' breeding grounds. The oscillating yearly patterns may have slowed and occasionally reversed directional change in trait trajectories, although there was a trend over time for all traits except tarsus to increase in size. The net positive directional selection on some traits, despite periodic climate-associated fluctuations, suggests that cliff swallow morphology in the population is likely to keep changing and supports recent work contending that selection in general does not fluctuate enough to be an effective driver of stasis.
引用
收藏
页码:1129 / 1142
页数:14
相关论文
共 64 条