Numerical ranges and complex symmetric operators in semi-inner-product spaces

被引:0
作者
An, Il Ju [1 ]
Heo, Jaeseong [2 ]
机构
[1] Kyung Hee Univ, Dept Appl Math, Yongin 17104, Gyeonggi Do, South Korea
[2] Hanyang Univ, Res Inst Nat Sci, Dept Math, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
Semi-inner-product space; Numerical range; Conjugations; Complex symmetric operators; Generalized adjoint;
D O I
10.1186/s13660-022-02886-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the numerical range of a bounded linear operator on a semi-inner-product space. We compute the numerical ranges of some operators on l(2)(p)(C) (1 <= p < infinity) and show that the numerical range of the backward shift on an infinite-dimensional space l(p) is the open unit disc. We define a conjugation and a complex symmetric operator on a semi-inner-product space and discuss complex symmetry in the dual space. We prove some properties of a generalized adjoint of a complex symmetric operator. We also show that the numerical range of the complex conjugation on l(n)(p) (n >= 2) is the closed unit disc. Finally, we discuss the sequentially essential numerical ranges of operators on a semi-inner-product space.
引用
收藏
页数:15
相关论文
共 14 条
  • [11] Lumer G., 1961, T AM MATH SOC, V100, P29, DOI DOI 10.1090/S0002-9947-1961-0133024-2
  • [12] Rao DKM., 1997, NUMERICAL RANGE, DOI DOI 10.1007/978-1-4613-8498-4
  • [13] Takagi T., 1925, JAPAN J MATH, V1, P83, DOI [DOI 10.4099/JJM1924.1.0_83, 10.4099/jjm1924.1.0 83]
  • [14] Zhang HZ, 2009, J MACH LEARN RES, V10, P2741