Numerical ranges and complex symmetric operators in semi-inner-product spaces

被引:0
作者
An, Il Ju [1 ]
Heo, Jaeseong [2 ]
机构
[1] Kyung Hee Univ, Dept Appl Math, Yongin 17104, Gyeonggi Do, South Korea
[2] Hanyang Univ, Res Inst Nat Sci, Dept Math, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
Semi-inner-product space; Numerical range; Conjugations; Complex symmetric operators; Generalized adjoint;
D O I
10.1186/s13660-022-02886-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the numerical range of a bounded linear operator on a semi-inner-product space. We compute the numerical ranges of some operators on l(2)(p)(C) (1 <= p < infinity) and show that the numerical range of the backward shift on an infinite-dimensional space l(p) is the open unit disc. We define a conjugation and a complex symmetric operator on a semi-inner-product space and discuss complex symmetry in the dual space. We prove some properties of a generalized adjoint of a complex symmetric operator. We also show that the numerical range of the complex conjugation on l(n)(p) (n >= 2) is the closed unit disc. Finally, we discuss the sequentially essential numerical ranges of operators on a semi-inner-product space.
引用
收藏
页数:15
相关论文
共 14 条
[1]  
[Anonymous], 1961, Trans. Am. Math. Soc.
[2]  
Ch M., 2018, SCI MATH JPN, V81, P37
[3]   Complex symmetric operators and isotropic vectors on Banach spaces [J].
Cho, Muneo ;
Hur, Injo ;
Lee, Ji Eun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) :752-764
[4]   Quantum error correcting codes from the compression formalism [J].
Choi, Man-Duen ;
Kribs, David W. ;
Zyczkowski, Karol .
REPORTS ON MATHEMATICAL PHYSICS, 2006, 58 (01) :77-91
[5]  
Dragomir S.S., 2004, semi-inner products and application
[6]  
FILLMORE PA, 1972, ACTA SCI MATH, V33, P179
[7]   Mathematical and physical aspects of complex symmetric operators [J].
Garcia, Stephan Ramon ;
Prodan, Emil ;
Putinar, Mihai .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (35)
[8]  
GILES JR, 1967, T AM MATH SOC, V129, P436
[9]  
Godic V., 1965, Usp. Mat. Nauk, V20, P64
[10]  
Gustafson KE., 1997, Numerical range: the field of values of linear operators and matrices, DOI DOI 10.1007/978-1-4613-8498-4