Numerical ranges and complex symmetric operators in semi-inner-product spaces

被引:0
作者
An, Il Ju [1 ]
Heo, Jaeseong [2 ]
机构
[1] Kyung Hee Univ, Dept Appl Math, Yongin 17104, Gyeonggi Do, South Korea
[2] Hanyang Univ, Res Inst Nat Sci, Dept Math, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
Semi-inner-product space; Numerical range; Conjugations; Complex symmetric operators; Generalized adjoint;
D O I
10.1186/s13660-022-02886-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the numerical range of a bounded linear operator on a semi-inner-product space. We compute the numerical ranges of some operators on l(2)(p)(C) (1 <= p < infinity) and show that the numerical range of the backward shift on an infinite-dimensional space l(p) is the open unit disc. We define a conjugation and a complex symmetric operator on a semi-inner-product space and discuss complex symmetry in the dual space. We prove some properties of a generalized adjoint of a complex symmetric operator. We also show that the numerical range of the complex conjugation on l(n)(p) (n >= 2) is the closed unit disc. Finally, we discuss the sequentially essential numerical ranges of operators on a semi-inner-product space.
引用
收藏
页数:15
相关论文
共 14 条