Compact embedding for p(x, t)-Sobolev spaces and existence theory to parabolic equations with p(x, t)-growth

被引:12
作者
Erhardt, Andre H. [1 ]
机构
[1] Univ Hohenheim, Inst Appl Math & Stat, Emil Wolff Str 27, D-70599 Stuttgart, Germany
来源
REVISTA MATEMATICA COMPLUTENSE | 2017年 / 30卷 / 01期
关键词
Existence theory; Nonlinear parabolic problems; Nonstandard growth; Nonstandard parabolic Lebesgue and Sobolev spaces; Compactness theorem; HIGHER INTEGRABILITY; NONSTANDARD GROWTH; VARIABLE EXPONENT; SYSTEMS; ORDER;
D O I
10.1007/s13163-016-0211-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the compact embedding of p(x, t)-Sobolev spaces into p(x, t)-Lebesgue spaces. Moreover, we prove some existence results for nonlinear parabolic problems of the form partial derivative(t)u - div a(x, t, Du) = f - div (vertical bar F vertical bar F-p(x,F- t)-2) in Omega(T), where the vector-field a(x, t, .) satisfies certain p(x, t)-growth conditions.
引用
收藏
页码:35 / 61
页数:27
相关论文
共 32 条
  • [1] Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
  • [2] Regularity results for parabolic systems related to a class of non-Newtonian fluids
    Acerbi, E
    Mingione, G
    Seregin, GA
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (01): : 25 - 60
  • [3] Regularity results for stationary electro-rheological fluids
    Acerbi, E
    Mingione, G
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) : 213 - 259
  • [4] Regularity results for a class of functionals with non-standard growth
    Acerbi, E
    Mingione, G
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) : 121 - 140
  • [5] Existence theorems for solutions of parabolic equations with variable order of nonlinearity
    Alkhutov, Yu. A.
    Zhikov, V. V.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2010, 270 (01) : 15 - 26
  • [6] [Anonymous], 2013, INT SERIES NUMERICAL
  • [7] [Anonymous], 2015, ATLANTIS STUDIES DIF
  • [8] [Anonymous], 2001, Ann. Scuola Norm. Sup. Pisa Cl. Sci
  • [9] [Anonymous], 2013, THESIS
  • [10] Antontsev S, 2007, INT SER NUMER MATH, V154, P33