Donaldson invariants for non-simply connected manifolds

被引:14
作者
Mariño, M [1 ]
Moore, G [1 ]
机构
[1] Yale Univ, Dept Phys, New Haven, CT 06520 USA
关键词
D O I
10.1007/s002200050611
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study Coulomb branch ("u-plane") integrals for N = 2 supersymmetric SU(2), SO(3) Yang-Mills theory on 4-manifolds X of b(1)(X) > 0, b(2)(+)(X) = 1. Using wall-crossing arguments we derive expressions for the Donaldson invariants for manifolds with b(1) (X) > 0, b(2)(+)(X) > 0. Explicit expressions for X = CP1 x F-g, where F-g is a Riemann surface of genus g are obtained using Kronecker's double series identity. The result might be useful in future studies of quantum cohomology.
引用
收藏
页码:249 / 267
页数:19
相关论文
共 26 条
[1]   TOPOLOGICAL REDUCTION OF 4D SYM TO 2D SIGMA-MODELS [J].
BERSHADSKY, M ;
JOHANSEN, A ;
SADOV, V ;
VAFA, C .
NUCLEAR PHYSICS B, 1995, 448 (1-2) :166-186
[2]  
Donaldon S.K., 1990, OXFORD MATH MONOGRAP
[3]  
DONALDSON SK, 1995, VECTOR BUNDLES ALGEB
[4]   The blowup formula for Donaldson invariants [J].
Fintushel, R ;
Stern, RJ .
ANNALS OF MATHEMATICS, 1996, 143 (03) :529-546
[5]  
GORSKY A, RG EQUATIONS WHITHAM
[6]   Modular forms and Donaldson invariants for 4-manifolds with b(+)=1 [J].
Gottsche, L .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (03) :827-843
[7]  
GOTTSCHE L, JACOBI FORMS STRUCTU
[8]  
HOFER H, 1995, FLOER MEMORIAL VOLUM
[9]  
Li TJ, 1995, MATH RES LETT, V2, P797
[10]  
LOSEV A, ISSUES TOPOLOGICAL G