miR-1-Mediated Induction of Cardiogenesis in Mesenchymal Stem Cells via Downregulation of Hes-1

被引:126
作者
Huang, Feng [1 ]
Tang, Liang [1 ]
Fang, Zhen-fei [1 ]
Hu, Xin-qun [1 ]
Pan, Jia-yi [1 ]
Zhou, Sheng-hua [1 ]
机构
[1] Cent South Univ, Dept Cardiol, Xiangya Hosp 2, Changsha 410011, Hunan, Peoples R China
关键词
GROWTH-FACTOR-BETA; BONE-MARROW; NOTCH; MICRORNA; DIFFERENTIATION; EXPRESSION; HEART; ENGRAFTMENT; DROSOPHILA; LINEAGES;
D O I
10.1155/2013/216286
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
MicroRNAs (miRNAs, miRs) have the potential to control stem cells fate decisions. The cardiac- and skeletal-muscle-specific miRNA, miR-1, can regulate embryonic stem cells differentiation to cardiac lineage by suppressing gene expression of alternative lineages. Accordingly, we hypothesized that overexpression of miR-1 may also promote cardiac gene expression in mesenchymal stem cells. Since Notch signaling could inhibit muscle differentiation, a process in contrast with the effect of miR-1, miR-1-mediated repression of Notch signaling may contribute to the observed effects of miR-1 in mesenchymal stem cells.. us, mesenchymal stem cells were infected by lentiviral vectors carrying miR-1, and cells expressing miR-1 were selected. Alterations in Notch signaling and cardiomyocyte markers, Nkx2.5, GATA-4, cTnT, and C 43, were identified by Western blot in the infected cells on days 1, 7, and 14. Our study showed that the downstream target molecule of Notch pathway, Hes-1, was obviously decreased in mesenchymal stem cells modified with miR-1, and overexpression of miR-1 promotes the specific cardiac gene expression in the infected cells. Knockdown of Hes-1 leads to the same effects on cell lineage decisions. Our results indicated that miR-1 promotes the differentiation of MSCs into cardiac lineage in part due to negative regulation of Hes-1.
引用
收藏
页数:9
相关论文
共 40 条
[1]   sFRP2 Suppression of Bone Morphogenic Protein (BMP) and Wnt Signaling Mediates Mesenchymal Stem Cell (MSC) Self-renewal Promoting Engraftment and Myocardial Repair [J].
Alfaro, Maria P. ;
Vincent, Alicia ;
Saraswati, Sarika ;
Thorne, Curtis A. ;
Hong, Charles C. ;
Lee, Ethan ;
Young, Pampee P. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (46) :35645-35653
[2]   Notch signaling: Cell fate control and signal integration in development [J].
Artavanis-Tsakonas, S ;
Rand, MD ;
Lake, RJ .
SCIENCE, 1999, 284 (5415) :770-776
[3]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[4]   Activation of myogenic differentiation pathways in adult bone marrow-derived stem cells [J].
Bedada, FB ;
Technau, A ;
Ebelt, H ;
Schulze, M ;
Braun, T .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (21) :9509-9519
[5]   Aberrant Epigenetic Landscape in Cancer: How Cellular Identity Goes Awry [J].
Berdasco, Maria ;
Esteller, Manel .
DEVELOPMENTAL CELL, 2010, 19 (05) :698-711
[6]   RETRACTED: Notch1 regulates the fate of cardiac progenitor cells (Retracted Article) [J].
Boni, Alessandro ;
Urbanek, Konrad ;
Nascimbene, Angelo ;
Hosoda, Toru ;
Zheng, Hanqiao ;
Delucchi, Francesca ;
Amano, Katsuya ;
Gonzalez, Arantxa ;
Vitale, Serena ;
Ojaimi, Caroline ;
Rizzi, Roberto ;
Bolli, Roberto ;
Yutzey, Katherine E. ;
Rota, Marcello ;
Kajstura, Jan ;
Anversa, Piero ;
Leri, Annarosa .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (40) :15529-15534
[7]   Regulation of Oligodendrocyte Differentiation and Myelination [J].
Emery, Ben .
SCIENCE, 2010, 330 (6005) :779-782
[8]   Normal microRNA maturation and germ-line stem cell maintenance requires loquacious, a double-stranded RNA-binding domain protein [J].
Förstemann, K ;
Tomari, Y ;
Du, TT ;
Vagin, VV ;
Denli, AM ;
Bratu, DP ;
Klattenhoff, C ;
Theurkauf, WE ;
Zamore, PD .
PLOS BIOLOGY, 2005, 3 (07) :1187-1201
[9]   MicroRNAs: key regulators of stem cells [J].
Gangaraju, Vamsi K. ;
Lin, Haifan .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2009, 10 (02) :116-125
[10]   Delayed enrichment of mesenchymal cells promotes cardiac lineage and calcium transient development [J].
Grajales, Liliana ;
Garcia, Jesus ;
Banach, Kathrin ;
Geenen, David L. .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2010, 48 (04) :735-745