Self-Propulsion of a Spherical Body Shedding Coaxial Vortex Rings in an Ideal Fluid: Hamiltonian Modeling and Simulation

被引:0
作者
Tallapragada, Phanindra [1 ]
Kelly, Scott David [1 ]
Bhattacharya, Tapobrata [1 ]
Fairchild, Michael J. [2 ]
机构
[1] Univ N Carolina, Dept Mech Engn & Engn Sci, Charlotte, NC 28223 USA
[2] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
来源
2012 AMERICAN CONTROL CONFERENCE (ACC) | 2012年
基金
美国国家科学基金会;
关键词
FLOW;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a model for the self-propulsion of a spherical body shedding circular vortex rings in an ideal fluid. Rings are shed from a moving ridge on the body's surface; timed oscillations of this ridge mimic the pulsing of a swimming medusan jellyfish. We regard the velocity of the ridge relative to the center of the body as a control parameter, and we demonstrate the relative efficacy of four distinct propulsive gaits. The model exploits the recently documented Hamiltonian structure underpinning the dynamic interaction of an arbitrary smooth body with a collection of closed vortex filaments of arbitrary shape.
引用
收藏
页码:1755 / 1760
页数:6
相关论文
共 16 条
[1]  
[Anonymous], P 49 IEEE C DEC CONT
[2]  
[Anonymous], 1992, VORTEX DYNAMICS, DOI DOI 10.1017/CBO9780511624063
[3]  
[Anonymous], 2002, THESIS
[4]  
[Anonymous], P ASME DYN IN PRESS
[5]  
Childress S., 1981, Mechanics of Swimming and Flying (Cambridge Studies in Mathematical Biology)
[6]   Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses [J].
Dabiri, JO ;
Colin, SP ;
Costello, JH ;
Gharib, M .
JOURNAL OF EXPERIMENTAL BIOLOGY, 2005, 208 (07) :1257-1265
[7]   Self-propulsion of a free hydrofoil with localized discrete vortex shedding: analytical modeling and simulation [J].
Kelly, Scott David ;
Xiong, Hailong .
THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2010, 24 (1-4) :45-50
[8]   Vortical flow outside a sphere and sound generation [J].
Knio, OM ;
Ting, L .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (04) :972-981
[9]  
Marsden JE., 1999, INTRO MECH SYMMETRY, V17
[10]  
Milne-Thomson L. M., 1996, Theoretical Hydrodynamics