The gauge structure of generalised diffeomorphisms

被引:173
作者
Berman, David S. [1 ]
Cederwall, Martin [2 ]
Kleinschmidt, Axel [3 ,4 ]
Thompson, Daniel C. [4 ,5 ]
机构
[1] Univ London, Queen Mary Coll, Sch Phys, Ctr Res String Theory, London E1 4NS, England
[2] Chalmers Univ Technol, Dept Fundamental Phys, SE-41296 Gothenburg, Sweden
[3] Max Planck Inst Gravitat Phys Albert Einstein Ins, D-14476 Golm, Germany
[4] Int Solvay Inst, B-1050 Brussels, Belgium
[5] Vrije Univ Brussel, Int Solvay Inst, B-1050 Brussels, Belgium
关键词
Space-Time Symmetries; M-Theory; GEOMETRY; DUALITY; SUPERGRAVITY; SYMMETRIES; E-11;
D O I
10.1007/JHEP01(2013)064
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the generalised diffeomorphisms in M-theory, which are gauge transformations unifying diffeomorphisms and tensor gauge transformations. After giving an E-n(n)-covariant description of the gauge transformations and their commutators, we show that the gauge algebra is infinitely reducible, i.e., the tower of ghosts for ghosts is infinite. The Jacobiator of generalised diffeomorphisms gives such a reducibility transformation. We give a concrete description of the ghost structure, and demonstrate that the infinite sums give the correct (regularised) number of degrees of freedom. The ghost towers belong to the sequences of representations previously observed appearing in tensor hierarchies and Borcherds algebras. All calculations rely on the section condition, which we reformulate as a linear condition on the cotangent directions. The analysis holds for n < 8. At n = 8, where the dual gravity field becomes relevant, the natural guess for the gauge parameter and its reducibility still yields the correct counting of gauge parameters.
引用
收藏
页数:22
相关论文
共 69 条
[1]   Non-geometric fluxes in supergravity and double field theory [J].
Andriot, D. ;
Hohm, O. ;
Larfors, M. ;
Luest, D. ;
Patalong, P. .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2012, 60 (11-12) :1150-1186
[2]   Geometric Action for Nongeometric Fluxes [J].
Andriot, David ;
Hohm, Olaf ;
Larfors, Magdalena ;
Luest, Dieter ;
Patalong, Peter .
PHYSICAL REVIEW LETTERS, 2012, 108 (26)
[3]   A ten-dimensional action for non-geometric fluxes [J].
Andriot, David ;
Larfors, Magdalena ;
Luest, Dieter ;
Patalong, Peter .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (09)
[4]  
Bengtsson V, 2005, J HIGH ENERGY PHYS
[5]   The character of pure spinors [J].
Berkovits, N ;
Nekrasov, N .
LETTERS IN MATHEMATICAL PHYSICS, 2005, 74 (01) :75-109
[6]   Duality invariant M-theory: gauged supergravities and Scherk-Schwarz reductions [J].
Berman, David S. ;
Musaev, Edvard T. ;
Thompson, Daniel C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (10)
[7]   Duality invariant actions and generalised geometry [J].
Berman, David S. ;
Godazgar, Hadi ;
Perry, Malcolm J. ;
West, Peter .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (02)
[8]   The local symmetries of M-theory and their formulation in generalised geometry [J].
Berman, David S. ;
Godazgar, Hadi ;
Godazgar, Mahdi ;
Perry, Malcolm J. .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (01)
[9]   Boundary terms in generalized geometry and doubled field theory [J].
Berman, David S. ;
Musaev, Edvard T. ;
Perry, Malcolm J. .
PHYSICS LETTERS B, 2011, 706 (2-3) :228-231
[10]   Generalized geometry and M theory [J].
Berman, David S. ;
Perry, Malcolm J. .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (06)