NVT: a fast and simple tool for the assessment of RNA-seq normalization strategies

被引:4
|
作者
Eder, Thomas [1 ,2 ]
Grebien, Florian [1 ]
Rattei, Thomas [2 ]
机构
[1] Ludwig Boltzmann Inst Canc Res, A-1090 Vienna, Austria
[2] Univ Vienna, Dept Microbiol & Ecosyst Sci, CUBE Div Computat Syst Biol, A-1090 Vienna, Austria
基金
欧洲研究理事会;
关键词
EXPRESSION;
D O I
10.1093/bioinformatics/btw521
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Measuring differential gene expression is a common task in the analysis of RNA-Seq data. To identify differentially expressed genes between two samples, it is crucial to normalize the datasets. While multiple normalization methods are available, all of them are based on certain assumptions that may or may not be suitable for the type of data they are applied on. Researchers therefore need to select an adequate normalization strategy for each RNA-Seq experiment. This selection includes exploration of different normalization methods as well as their comparison. Methods that agree with each other most likely represent realistic assumptions under the particular experimental conditions. Results: We developed the NVT package, which provides a fast and simple way to analyze and evaluate multiple normalization methods via visualization and representation of correlation values, based on a user-defined set of uniformly expressed genes.
引用
收藏
页码:3682 / 3684
页数:3
相关论文
共 50 条
  • [21] FX: an RNA-Seq analysis tool on the cloud
    Hong, Dongwan
    Rhie, Arang
    Park, Sung-Soo
    Lee, Jongkeun
    Ju, Young Seok
    Kim, Sujung
    Yu, Saet-Byeol
    Bleazard, Thomas
    Park, Hyun-Seok
    Rhee, Hwanseok
    Chong, Hyonyong
    Yang, Kap-Seok
    Lee, Yeon-Su
    Kim, In-Hoo
    Lee, Jin Soo
    Kim, Jong-Il
    Seo, Jeong-Sun
    BIOINFORMATICS, 2012, 28 (05) : 721 - 723
  • [22] A graph-based algorithm for RNA-seq data normalization
    Diem-Trang Tran
    Bhaskara, Aditya
    Kuberan, Balagurunathan
    Might, Matthew
    PLOS ONE, 2020, 15 (01):
  • [23] Normalization and noise reduction for single cell RNA-seq experiments
    Ding, Bo
    Zheng, Lina
    Zhu, Yun
    Li, Nan
    Jia, Haiyang
    Ai, Rizi
    Wildberg, Andre
    Wang, Wei
    BIOINFORMATICS, 2015, 31 (13) : 2225 - 2227
  • [24] A comparative study of RNA-seq analysis strategies
    Jaenes, Juergen
    Hu, Fengyuan
    Lewin, Alexandra
    Turro, Ernest
    BRIEFINGS IN BIOINFORMATICS, 2015, 16 (06) : 932 - 940
  • [25] Assessment of transcript reconstruction methods for RNA-seq
    Steijger, Tamara
    Abril, Josep F.
    Engstrom, Par G.
    Kokocinski, Felix
    Hubbard, Tim J.
    Guigo, Roderic
    Harrow, Jennifer
    Bertone, Paul
    NATURE METHODS, 2013, 10 (12) : 1177 - +
  • [26] Assessment of transcript reconstruction methods for RNA-seq
    Tamara Steijger
    Josep F Abril
    Pär G Engström
    Felix Kokocinski
    Tim J Hubbard
    Roderic Guigó
    Jennifer Harrow
    Paul Bertone
    Nature Methods, 2013, 10 : 1177 - 1184
  • [27] SCnorm: robust normalization of single-cell RNA-seq data
    Bacher, Rhonda
    Chu, Li-Fang
    Leng, Ning
    Gasch, Audrey P.
    Thomson, James A.
    Stewart, Ron M.
    Newton, Michael
    Kendziorski, Christina
    NATURE METHODS, 2017, 14 (06) : 584 - +
  • [28] Gene Ontology based housekeeping gene selection for RNA-seq normalization
    Chen, Chien-Ming
    Lu, Yu-Lun
    Sio, Chi-Pong
    Wu, Guan-Chung
    Tzou, Wen-Shyong
    Pai, Tun-Wen
    METHODS, 2014, 67 (03) : 354 - 363
  • [29] A scaling normalization method for differential expression analysis of RNA-seq data
    Robinson, Mark D.
    Oshlack, Alicia
    GENOME BIOLOGY, 2010, 11 (03):
  • [30] Normalization of human RNA-seq experiments using chimpanzee RNA as a spike-in standard
    Yu, Hannah
    Hahn, Yoonsoo
    Park, Sang-Ryoul
    Chung, Sun-Ku
    Jeong, Sangkyun
    Yang, Inchul
    SCIENTIFIC REPORTS, 2016, 6