Linear Generalized Synchronization of Spatial Chaotic Systems

被引:6
作者
Hai, Quan [1 ,2 ]
Liu, Shutang [1 ]
Hu, Changquan [1 ]
机构
[1] Shandong Univ, Coll Control Sci & Engn, Jinan 250061, Shandong, Peoples R China
[2] Inner Mongolia Normal Univ, Coll Math Sci, Hohhot 010022, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatial chaos; generalized synchronization; stable domain; linear coupling; JULIA SETS; PERTURBATIONS; OSCILLATION; BEHAVIOR;
D O I
10.1002/asjc.1742
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is devoted to study the generalized synchronization of spatial chaotic systems by applying linear coupling. Based on the stability of the fixed point of a plane system, we obtain the stable domain of the space plane. According to the stable domain of the space plane, the stable domain of the coupling strength for the linear generalized synchronization of the spatial chaotic systems is determined. Moreover, the relationship between the stable fixed plane and the synchronization of the spatial chaos system is also analyzed. Finally, an example is presented to validate the scheme and the analysis.
引用
收藏
页码:649 / 659
页数:11
相关论文
共 31 条
[1]  
[Anonymous], 1998, From chaos to order: perspectives, methodologies, and applications
[2]   On generalized synchronization of spatial chaos [J].
Chen, GR ;
Liu, ST .
CHAOS SOLITONS & FRACTALS, 2003, 15 (02) :311-318
[3]   On spatial periodic orbits and spatial chaos [J].
Chen, GR ;
Liu, ST .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (04) :935-941
[4]   Complete synchronization and stability of star-shaped complex networks [J].
Gu, YQ ;
Shao, C ;
Fu, XC .
CHAOS SOLITONS & FRACTALS, 2006, 28 (02) :480-488
[5]   2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR [J].
HENON, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) :69-77
[6]  
Kazuomi K., 2000, IEICE T FUND ELECTR, V83, P523
[7]   Impulsive control and synchronization of spatiotemporal chaos [J].
Khadra, A ;
Liu, XZ ;
Shen, XM .
CHAOS SOLITONS & FRACTALS, 2005, 26 (02) :615-636
[8]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992
[9]  
Ling L, 2007, LECT NOTES COMPUT SC, V4688, P453
[10]   LINEAR GENERALIZED SYNCHRONIZATION OF SPATIAL JULIA SETS [J].
Liu, Ping ;
Liu, Changan .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (05) :1281-1291