Comparing field data using Alpert multi-wavelets

被引:5
|
作者
Salloum, Maher [1 ]
Karlson, Kyle N. [2 ]
Jin, Helena [2 ]
Brown, Judith A. [3 ]
Bolintineanu, Dan S. [4 ]
Long, Kevin N. [5 ]
机构
[1] Sandia Natl Labs, 7011 East Ave,MS 9158, Livermore, CA 94550 USA
[2] Sandia Natl Labs, 7011 East Ave,MS 9042, Livermore, CA 94550 USA
[3] Sandia Natl Labs, 1515 Eubank SE,MS 0828, Albuquerque, NM 87123 USA
[4] Sandia Natl Labs, 1515 Eubank SE,MS 1064, Albuquerque, NM 87123 USA
[5] Sandia Natl Labs, 1515 Eubank SE,MS 0840, Albuquerque, NM 87123 USA
关键词
Comparison; Wavelets; Field data; Mesh; Error metric; Compression; Threshold; Error field; SOLID MECHANICS MODELS; IMAGE-ANALYSIS; REPRESENTATION; RECOGNITION; COMPRESSION; VALIDATION; MOMENTS; BASES;
D O I
10.1007/s00466-020-01878-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce a method to compare sets of full-field data using Alpert tree-wavelet transforms. The Alpert tree-wavelet methods transform the data into a spectral space allowing the comparison of all points in the fields by comparing spectral amplitudes. The methods are insensitive to translation, scale and discretization and can be applied to arbitrary geometries. This makes them especially well suited for comparison of field data sets coming from two different sources such as when comparing simulation field data to experimental field data. We have developed both global and local error metrics to quantify the error between two fields. We verify the methods on two-dimensional and three-dimensional discretizations of analytical functions. We then deploy the methods to compare full-field strain data from a simulation of elastomeric syntactic foam.
引用
收藏
页码:893 / 910
页数:18
相关论文
共 50 条
  • [1] Comparing field data using Alpert multi-wavelets
    Maher Salloum
    Kyle N. Karlson
    Helena Jin
    Judith A. Brown
    Dan S. Bolintineanu
    Kevin N. Long
    Computational Mechanics, 2020, 66 : 893 - 910
  • [2] Alpert multi-wavelets for functional inverse problems: direct optimization and deep learning
    Salloum, Maher
    Bon, Bradley L.
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2023, 24 (01): : 76 - 89
  • [3] Parameter Estimation using Multi-Wavelets
    Preisig, Heinz A.
    20TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2010, 28 : 367 - 372
  • [4] Balance of multi-wavelets
    毛一波
    Journal of Chongqing University, 2003, (02) : 55 - 58
  • [5] A study of orthonormal multi-wavelets
    Chui, CK
    Lian, JA
    APPLIED NUMERICAL MATHEMATICS, 1996, 20 (03) : 273 - 298
  • [6] COMPACTLY SUPPORTED MULTI-WAVELETS
    Banas, Wojciech
    OPUSCULA MATHEMATICA, 2012, 32 (01) : 21 - 29
  • [7] Armlets and balanced multi-wavelets
    Lian, JA
    WAVELETS: APPLICATIONS IN SIGNAL AND IMAGE PROCESSING X, PTS 1 AND 2, 2003, 5207 : 162 - 180
  • [8] Balanced multi-wavelets in Rs
    Chui, CK
    Jiang, QT
    MATHEMATICS OF COMPUTATION, 2005, 74 (251) : 1323 - 1344
  • [9] A unified approach for constructing multi-wavelets
    Özkaramanli, H
    Bhatti, A
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 1245 - 1248
  • [10] A study of orthonormal multi-wavelets on the interval
    Zhou, Siwang
    Gao, Xieping
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2006, 83 (11) : 819 - 837