Quantum-classical correspondence via Lionville dynamics .2. Correspondence for chaotic Hamiltonian systems

被引:46
作者
Wilkie, J
Brumer, P
机构
[1] Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON
来源
PHYSICAL REVIEW A | 1997年 / 55卷 / 01期
关键词
D O I
10.1103/PhysRevA.55.43
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We prove quantum-classical correspondence for bound conservative classically chaotic Hamiltonian systems. In particular, quantum Liouville spectral projection operators and spectral densities, and hence classical dynamics, are shown to approach their classical analogs in the h-->0 limit. Correspondence is shown to occur via the elimination of essential singularities. In addition, applications to matrix elements of observables in chaotic systems are discussed.
引用
收藏
页码:43 / 61
页数:19
相关论文
共 50 条
[41]   Quantum-classical correspondence of strongly chaotic many-body spin models [J].
Benet, Luis ;
Borgonovi, Fausto ;
Izrailev, Felix M. ;
Santos, Lea F. .
PHYSICAL REVIEW B, 2023, 107 (15)
[42]   Classical Limit of Quantum Mechanics for Damped Driven Oscillatory Systems: Quantum-Classical Correspondence [J].
Choi, Jeong Ryeol .
FRONTIERS IN PHYSICS, 2021, 9
[43]   Quantum-classical correspondence for local density of states and eigenfunctions of a chaotic periodic billiard [J].
Luna-Acosta, GA ;
Méndez-Bermúdez, JA ;
Izrailev, FM .
PHYSICS LETTERS A, 2000, 274 (5-6) :192-199
[44]   On quantum-classical correspondence in classical studies of atomic processes [J].
Rakovic, MJ ;
Schultz, DR ;
Stancil, PC ;
Janev, RK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (22) :4753-4770
[45]   Condition of correspondence between quantum and classical dynamics for a chaotic system [J].
Kolovsky, AR .
PHYSICAL REVIEW LETTERS, 1996, 76 (03) :340-343
[46]   CHAOS AND A QUANTUM-CLASSICAL CORRESPONDENCE IN THE KICKED TOP [J].
FOX, RF ;
ELSTON, TC .
PHYSICAL REVIEW E, 1994, 50 (04) :2553-2563
[47]   Nonstatistical quantum-classical correspondence in phase space [J].
dePolavieja, GG .
FOUNDATIONS OF PHYSICS LETTERS, 1996, 9 (05) :411-424
[48]   Quantum-classical correspondence on compact phase space [J].
Horvat, Martin ;
Prosen, Tomaz ;
Esposti, Mirko Degli .
NONLINEARITY, 2006, 19 (06) :1471-1493
[49]   Quantum-classical correspondence using projection operators [J].
Omnes, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (02) :697-707
[50]   CHAOS AND THE QUANTUM-CLASSICAL CORRESPONDENCE IN THE KICKED PENDULUM [J].
FOX, RF ;
ELSTON, TC .
PHYSICAL REVIEW E, 1994, 49 (05) :3683-3696