Enhanced bioethanol production using atmospheric cold plasma -assisted detoxi fication of sugarcane bagasse hydrolysate

被引:42
作者
Lin, Shin-Ping [1 ]
Kuo, Tai-Ching [2 ]
Wang, Hsueh-Ting [3 ]
Ting, Yuwen [3 ]
Hsieh, Chang-Wei [4 ]
Chen, Yu-Kuo [5 ]
Hsu, Hsien-Yi [6 ,7 ,8 ]
Cheng, Kuan-Chen [2 ,3 ,9 ]
机构
[1] Taipei Med Univ, Sch Food Safety, Taipei 11042, Taiwan
[2] Natl Taiwan Univ, Inst Biotechnol, Taipei 10672, Taiwan
[3] Natl Taiwan Univ, Inst Food Sci Technol, Taipei 10617, Taiwan
[4] Natl Chung Hsing Univ, Dept Food Sci & Biotechnol, 145 Xingda Rd, Taichung 40227, Taiwan
[5] Natl Pingtung Univ Sci & Technol, Dept Food Sci, Pingtung 91201, Taiwan
[6] City Univ Hong Kong, Sch Energy & Environm, Kowloon Tong, Hong Kong, Peoples R China
[7] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon Tong, Hong Kong, Peoples R China
[8] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[9] China Med Univ, China Med Univ Hosp, Dept Med Res, 91 Hsueh Shih Rd, Taichung 40402, Taiwan
关键词
Bioethanol; Acid hydrolysis; Sugarcane bagasse; Cold plasma; Detoxification; Chicken meal; ETHANOL-PRODUCTION; SACCHAROMYCES-CEREVISIAE; ALCOHOL-DEHYDROGENASE; ACID PRETREATMENT; DETOXIFICATION; DEGRADATION; INHIBITION; GROWTH; YEAST; FERMENTATION;
D O I
10.1016/j.biortech.2020.123704
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The current study used acid hydrolysis of lignocellulosic materials to obtain fermentable sugar for bioethanol production. However, toxic compounds that inhibit fermentation are also produced during the process, which reduces the bioethanol productivity. In this study, atmospheric cold plasma (ACP) was adopted to degrade the toxic compounds within sulfuric acid-hydrolyzed sugarcane bagasse. After ACP treatment, significant decreases in toxic compounds (31% of the formic acid, 45% of the acetic acid, 80% of the hydroxymethylfurfural, and 100% of the furfural) were observed. The toxicity of the hydrolysate was low enough for bioethanol production using Kluyveromyces marxianus. After adopting optimal ACP conditions (200 W power for 25 min), the bioethanol productivity improved from 0.25 to 0.65 g/L/h, which means that ACP could effectively degrade toxic compounds within the hydrolysate, thereby enhancing bioethanol production. Various nitrogen substitute was coordinated with detoxified hydrolysate, and chicken meal group presented the highest bioethanol productivity (0.45 g/L/h).
引用
收藏
页数:9
相关论文
共 50 条
[1]   Transmittance properties in a magnetized cold plasma-superconductor periodic multilayer [J].
Aghajamali, Alireza .
APPLIED OPTICS, 2016, 55 (23) :6336-6340
[2]   Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review [J].
Alvira, P. ;
Tomas-Pejo, E. ;
Ballesteros, M. ;
Negro, M. J. .
BIORESOURCE TECHNOLOGY, 2010, 101 (13) :4851-4861
[3]  
AmayaDelgado L., 2018, SPECIAL TOPICS RENEW
[4]   INHIBITION OF GLYCOLYSIS BY FURFURAL IN SACCHAROMYCES-CEREVISIAE [J].
BANERJEE, N ;
BHATNAGAR, R ;
VISWANATHAN, L .
EUROPEAN JOURNAL OF APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1981, 11 (04) :226-228
[5]   Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process [J].
Cheng, Ke-Ke ;
Cai, Bai-Yan ;
Zhang, Jian-An ;
Ling, Hong-Zhi ;
Zhou, Yu-He ;
Ge, Jing-Ping ;
Xu, Jing-Ming .
BIOCHEMICAL ENGINEERING JOURNAL, 2008, 38 (01) :105-109
[6]   Effect of corona discharge plasma on microbial decontamination of dried squid shreds including physico-chemical and sensory evaluation [J].
Choi, Soee ;
Puligundla, Pradeep ;
Mok, Chulkyoon .
LWT-FOOD SCIENCE AND TECHNOLOGY, 2017, 75 :323-328
[7]   Effect of Furfural on Saccharomyces carlsbergensis Growth, Physiology and Ethanol Production [J].
da Silva, Teresa Lopes ;
Santo, Rui ;
Reis, Alberto ;
Passarinho, Paula C. .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2017, 182 (02) :708-720
[8]   Net-zero emissions energy systems [J].
Davis, Steven J. ;
Lewis, Nathan S. ;
Shaner, Matthew ;
Aggarwal, Sonia ;
Arent, Doug ;
Azevedo, Ines L. ;
Benson, Sally M. ;
Bradley, Thomas ;
Brouwer, Jack ;
Chiang, Yet-Ming ;
Clack, Christopher T. M. ;
Cohen, Armond ;
Doig, Stephen ;
Edmonds, Jae ;
Fennell, Paul ;
Field, Christopher B. ;
Hannegan, Bryan ;
Hodge, Bri-Mathias ;
Hoffert, Martin I. ;
Ingersoll, Eric ;
Jaramillo, Paulina ;
Lackner, Klaus S. ;
Mach, Katharine J. ;
Mastrandrea, Michael ;
Ogden, Joan ;
Peterson, Per F. ;
Sanchez, Daniel L. ;
Sperling, Daniel ;
Stagner, Joseph ;
Trancik, Jessika E. ;
Yang, Chi-Jen ;
Caldeira, Ken .
SCIENCE, 2018, 360 (6396) :1419-+
[9]   Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production [J].
de Moraes Rocha, George Jackson ;
Martin, Carlos ;
Soares, Isaias Barbosa ;
Souto Maior, Ana Maria ;
Baudel, Henrique Macedo ;
Moraes de Abreu, Cesar Augusto .
BIOMASS & BIOENERGY, 2011, 35 (01) :663-670
[10]   Ethanol production from acid-pretreated and detoxified rice straw as sole renewable resource [J].
Germec, Mustafa ;
Turhan, Irfan .
BIOMASS CONVERSION AND BIOREFINERY, 2018, 8 (03) :607-619