Enhanced bioethanol production using atmospheric cold plasma -assisted detoxi fication of sugarcane bagasse hydrolysate

被引:39
|
作者
Lin, Shin-Ping [1 ]
Kuo, Tai-Ching [2 ]
Wang, Hsueh-Ting [3 ]
Ting, Yuwen [3 ]
Hsieh, Chang-Wei [4 ]
Chen, Yu-Kuo [5 ]
Hsu, Hsien-Yi [6 ,7 ,8 ]
Cheng, Kuan-Chen [2 ,3 ,9 ]
机构
[1] Taipei Med Univ, Sch Food Safety, Taipei 11042, Taiwan
[2] Natl Taiwan Univ, Inst Biotechnol, Taipei 10672, Taiwan
[3] Natl Taiwan Univ, Inst Food Sci Technol, Taipei 10617, Taiwan
[4] Natl Chung Hsing Univ, Dept Food Sci & Biotechnol, 145 Xingda Rd, Taichung 40227, Taiwan
[5] Natl Pingtung Univ Sci & Technol, Dept Food Sci, Pingtung 91201, Taiwan
[6] City Univ Hong Kong, Sch Energy & Environm, Kowloon Tong, Hong Kong, Peoples R China
[7] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon Tong, Hong Kong, Peoples R China
[8] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[9] China Med Univ, China Med Univ Hosp, Dept Med Res, 91 Hsueh Shih Rd, Taichung 40402, Taiwan
关键词
Bioethanol; Acid hydrolysis; Sugarcane bagasse; Cold plasma; Detoxification; Chicken meal; ETHANOL-PRODUCTION; SACCHAROMYCES-CEREVISIAE; ALCOHOL-DEHYDROGENASE; ACID PRETREATMENT; DETOXIFICATION; DEGRADATION; INHIBITION; GROWTH; YEAST; FERMENTATION;
D O I
10.1016/j.biortech.2020.123704
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The current study used acid hydrolysis of lignocellulosic materials to obtain fermentable sugar for bioethanol production. However, toxic compounds that inhibit fermentation are also produced during the process, which reduces the bioethanol productivity. In this study, atmospheric cold plasma (ACP) was adopted to degrade the toxic compounds within sulfuric acid-hydrolyzed sugarcane bagasse. After ACP treatment, significant decreases in toxic compounds (31% of the formic acid, 45% of the acetic acid, 80% of the hydroxymethylfurfural, and 100% of the furfural) were observed. The toxicity of the hydrolysate was low enough for bioethanol production using Kluyveromyces marxianus. After adopting optimal ACP conditions (200 W power for 25 min), the bioethanol productivity improved from 0.25 to 0.65 g/L/h, which means that ACP could effectively degrade toxic compounds within the hydrolysate, thereby enhancing bioethanol production. Various nitrogen substitute was coordinated with detoxified hydrolysate, and chicken meal group presented the highest bioethanol productivity (0.45 g/L/h).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Evaluation of detoxified sugarcane bagasse hydrolysate by atmospheric cold plasma for bacterial cellulose production
    Lin, Shin-Ping
    Huang, Shyh-Haur
    Ting, Yuwen
    Hsu, Hsien-Yi
    Cheng, Kuan-Chen
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 204 : 136 - 143
  • [2] Detoxification vs. adaptation to inhibitory substances in the production of bioethanol from sugarcane bagasse hydrolysate: A case study
    Nouri, Hoda
    Ahi, Mohsen
    Azin, Mehrdad
    Gargari, Seyed Latif Mousavi
    BIOMASS & BIOENERGY, 2020, 139
  • [3] Optimization of Sugarcane Bagasse Hydrolysis by Microwave-Assisted Pretreatment for Bioethanol Production
    Ahi, Mohsen
    Azin, Mehrdad
    Shojaosadati, Seyed A.
    Vasheghani-Farahani, Ebrahim
    Nosrati, Mohsen
    CHEMICAL ENGINEERING & TECHNOLOGY, 2013, 36 (11) : 1997 - 2005
  • [4] Ultrasound assisted metal chloride treatment of sugarcane bagasse for bioethanol production
    Ramadoss, Govindarajan
    Muthukumar, Karuppan
    RENEWABLE ENERGY, 2016, 99 : 1092 - 1102
  • [5] Delignification of sugarcane bagasse using pretreatment strategies for bioethanol production
    Niju, S.
    Swathika, M.
    BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2019, 20
  • [6] Enhanced bioethanol production from different sugarcane bagasse cultivars using co-culture of Saccharomyces cerevisiae and Scheffersomyces (Pichia) stipitis
    Santosh, Ingle
    Ashtavinayak, Paradh
    Amol, Dudhane
    Sanjay, Patil
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2017, 5 (03): : 2861 - 2868
  • [7] Bioethanol Production by Repeated Batch Using Immobilized Yeast Cells on Sugarcane Bagasse
    Sowatad, Apinya
    Todhanakasem, Tatsaporn
    WASTE AND BIOMASS VALORIZATION, 2020, 11 (05) : 2009 - 2016
  • [8] Bioethanol Production from Sugarcane Bagasse Using Neurospora intermedia in an Airlift Bioreactor
    Restiawaty, Elvi
    Gani, Kindi Pyta
    Dewi, Arinta
    Arina, Linea Alfa
    Kurniawati, Katarina Ika
    Budhi, Y.
    Akhmaloka, Akhmaloka
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY DEVELOPMENT-IJRED, 2020, 9 (02): : 247 - 253
  • [9] Bioethanol Production From Sugarcane Bagasse Hemicellulose Hydrolysate by Immobilized S. shehatae in a Fluidized Bed Fermenter Under Magnetic Field
    Dussan, Kelly J.
    Justo, Oselys Rodriguez
    Perez, Victor Haber
    David, Geraldo F.
    Silveira Junior, Euripedes Garcia
    da Silva, Silvio S.
    BIOENERGY RESEARCH, 2019, 12 (02) : 338 - 346
  • [10] Xylan-hydrolyzing thermotolerant Candida tropicalis HNMA-1 for bioethanol production from sugarcane bagasse hydrolysate
    Nouri, Hoda
    Azin, Mehrdad
    Mousavi, Mir Latif
    ANNALS OF MICROBIOLOGY, 2017, 67 (09) : 633 - 641