Multiplicity results involving p-biharmonic Kirchhoff-type problems

被引:0
作者
Alsaedi, Ramzi [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
关键词
Variational method; Biharmonic Kirchhoff-type equations; Multiple solutions; Nehari manifold; BOUNDARY-VALUE-PROBLEMS; NONTRIVIAL SOLUTIONS; NEHARI MANIFOLD; LAPLACIAN; EQUATIONS; OSCILLATIONS; EXISTENCE;
D O I
10.1186/s13661-020-01416-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the existence of multiple solutions for the following Kirchhoff type equations involving p-biharmonic operator: -M(integral(Omega)(vertical bar Delta(p)u vertical bar(2)+vertical bar u vertical bar(p))dx)(Delta(2)(p)u-vertical bar u vertical bar(p-2)u)=lambda f(x)vertical bar u vertical bar(q-2)u+g(x)vertical bar u vertical bar m(-2)u, x is an element of Omega, where Omega is a bounded domain in R-N (N > 1), lambda>0,p,q,m > 1, M is a continuous function, and the weight functionsfandgare measurable. We obtain the existence results by combining the variational method with Nehari manifold and fibering maps.
引用
收藏
页数:15
相关论文
共 30 条
[1]   Low perturbations of p-biharmonic equations with competing nonlinearities [J].
Alsaedi, R. ;
Dhifli, A. ;
Ghanmi, A. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (04) :642-657
[2]  
Alsaedi R., 2016, ELECTRON J DIFFER EQ, V2016, DOI [10.1186/s13662-016-1025-x, DOI 10.1186/S13662-016-1025-X]
[3]  
Alsaedi R., 2015, ELECTRON J QUAL THEO, V2015, DOI [10.1186/s13662-015-0363-4, DOI 10.1186/S13662-015-0363-4]
[4]   Minimax method involving singular p(x)-Kirchhoff equation [J].
Ben Ali, K. ;
Ghanmi, A. ;
Kefi, K. .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (11)
[5]   Ground state solutions of scalar field fractional Schrodinger equations [J].
Bisci, Giovanni Molica ;
Radulescu, Vicentiu D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) :2985-3008
[6]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[7]   The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function [J].
Brown, KJ ;
Zhang, YP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :481-499
[8]   Existence of solution for a singular fractional Laplacian problem with variable exponents and indefinite weights [J].
Chammem, R. ;
Ghanmi, A. ;
Sahbani, A. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (08) :1320-1332
[9]   The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions [J].
Chen, Ching-yu ;
Kuo, Yueh-cheng ;
Wu, Tsung-fang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) :1876-1908
[10]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406